
Avoiding WSDL Bad Practices in Code-First Web
Services

José Luis Ordiales Coscia, Cristian Mateos1,2, Marco Crasso1,2, and Alejandro
Zunino1,2

1 ISISTAN Research Institute. UNICEN University. Campus Universitario, Tandil
(B7001BBO), Buenos Aires, Argentina. Tel.: +54 (2293) 439682.

2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Abstract. Service-Oriented Computing allows software developers to structure
applications as a set of standalone and reusable components called services. The
common technological choice for materializing these services is Web Services,
whose exposed functionality is described by using the Web Services Descrip-
tion Language (WSDL). Methodologically, Web Services are often built by first
implementing their behavior and then generating the corresponding WSDL docu-
ment via automatic tools. Good WSDL designs are crucial to derive reusable Web
Services. We found that there is a high correlation between well-known Object-
Oriented metrics taken in the code implementing services and the occurrences of
the WSDL anti-patterns in their WSDL documents. This paper shows that some
refactorings performed early when developing Web Services can greatly improve
the quality of generated WSDL documents.

Keywords: SERVICE-ORIENTED COMPUTING; WEB SERVICES; CODE-FIRST; OBJECT-ORIENTED METRICS;
WSDL ANTI-PATTERNS; EARLY DETECTION.

1 Introduction

Service-Oriented Computing (SOC) is a relatively new computing paradigm that has
radically changed the way applications are architected, designed and implemented [1].
The SOC paradigm introduces a new kind of building block called service, which rep-
resents functionality that is delivered by external providers (e.g. a business or an organi-
zation), made available in registries, and remotely consumed using standard protocols.
Far from being a buzzword, SOC has been exploited by major players in the software
industry including Microsoft, Oracle, Google and Amazon.

The term Web Services refers to the de facto standard for implementing the SOC
paradigm. Web Services are services enabled by using ubiquitous Web protocols [2].
When using Web Services, a provider describes each service technical contract in WSDL,
an XML-based language designed for specifying services’ functionality as a set of ab-
stract operations with inputs and outputs, and to associate binding information so that
consumers can invoke the offered operations.

To make their WSDL documents publicly available, providers usually employ a
specification of service registries called Universal Description, Discovery and Integra-
tion (UDDI), whose central purpose is to maintain meta-data about Web Services. Apart

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 1



from this, UDDI defines an inquiry Application Programming Interface (API) for dis-
covering services, which allows consumers to discover services that match their func-
tional needs. Concretely, the inquiry API receives a keyword-based query and in turn
returns a list of candidate WSDL documents, which the consumer who performs the
discovery process must analyze. As a complement to UDDI, several syntactic Web Ser-
vice registries such as Woogle [3], WSQBE [4] and seekda!3 have emerged. These
registries basically work by applying text processing or machine learning techniques,
such as XML supervised classification [4] or clustering [5], to improve the retrieval
effectiveness of the same keyword-based discovery process [6].

Certainly, service contract design plays one of the most important roles in enabling
third-party consumers to understand, discover and reuse services [7]. On one hand,
unless appropriately specified by providers, service contract meta-data can be counter-
productive and obscure the purpose of a service, thus hindering its adoption. Indeed,
it has been shown that service consumers, when faced with two or more contracts in
WSDL that are similar from a functional perspective, they tend to choose the most
concisely described [8]. Moreover, a WSDL description without much comments of its
operations can make the associated Web Service difficult to be discovered [8]. Partic-
ularly, discovery precision of syntactic registries is harmed when dealing with poorly
described WSDL documents [8].

The work of [8] integrally studies common discoverability bad practices, or anti-
patterns for short, found in public WSDL documents, covering the problems mentioned
in the previous paragraph. In this paper, we study the feasibility of avoiding these anti-
patterns by using Object-Oriented (OO) metrics from the code implementing services.
Basically, the idea is employing these metrics as “indicators” that warn the user about
the potential occurrence of anti-patterns early in the Web Service implementation phase.
Specifically, through some statistical analysis, we found that there is a statistical sig-
nificant, high correlation between several traditional and ad-hoc OO metrics and the
anti-patterns. Based on this, we analyze several code refactorings that developers can
use to avoid anti-patterns in their service contracts.

The rest of the paper is structured as follows. Section 2 gives some background
on the WSDL anti-patterns. Then, Section 3 introduces the approach for detecting these
anti-patterns at the service implementation phase. Later, Section 4 presents experiments
that evidence the correlation of OO metrics with the anti-patterns, the derived source
code refactorings, and the positive effects of these latter in the WSDL documents. Sec-
tion 5 surveys relevant related works, and Section 6 concludes the paper.

2 Background

WSDL is a language that allows providers to describe two parts of a service, namely
what it does (its functionality) and how to invoke it. Following the version 1.1 of
the WSDL specification, the former part reveals the service interface that is offered
to potential consumers. The latter part specifies technological aspects, such as trans-
port protocols and network addresses. Consumers use the functional descriptions to

3 Seekda!, http://webservices.seekda.com

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 2



match third-party services against their needs, and the technological details to invoke
the selected service. With WSDL, service functionality is described as a port-type W =

{O0(I0,R0), ..,ON(IN ,RN)}, which arranges different operations Oi that exchange input
and return messages, Ii and Ri respectively. Main WSDL elements, such as port-types,
operations and messages, must be labeled with unique names. Optionally, these WSDL
elements might contain documentation in the form of comments.

Messages consist of parts that transport data between consumers and providers of
services, and vice-versa. Exchanged data is represented using XML according to spe-
cific data-type definitions in XML Schema Definition (XSD), a language to define the
structure of an XML element. XSD offers constructors for defining simple types (e.g.
integer and string), restrictions and both encapsulation and extension mechanisms to
define complex elements. XSD code might be included in a WSDL document using the
types element, but alternatively it might be put into a separate file and imported from
the WSDL document or even other WSDL documents afterward.

Commonly, a WSDL document is the only publicly available meta-data that de-
scribes a Web Service. Thus, many approaches to Web Service discovery are based
on service descriptions specified in WSDL [6]. Strongly inspired by classic Informa-
tion Retrieval techniques, such as word sense disambiguation, stop-words removal, and
stemming, in general these approaches extract keywords from WSDL documents, and
then model extracted information on inverted indexes or vector spaces [6]. Then, gener-
ated models are employed for retrieving relevant service descriptions, i.e. WSDL doc-
uments, for a given keyword-based query. Different experiments empirically have con-
firmed that these approaches to discover services are very interesting, however as they
rely on the descriptiveness of service specifications, poorly written WSDL documents
may deteriorate approaches retrieval effectiveness.

Table 1. The core sub-set of the Web Service discoverability anti-patterns.

Anti-pattern Occurs when

Ambiguous names Ambiguous or meaningless names are used for the main elements of a WSDL document.

Empty messages Empty messages are used in operations that do not produce outputs nor receive inputs.

Enclosed data model
The data-type definitions used for exchanging information are placed in WSDL documents

rather than in separate XSD documents.

Low cohesive operations

in the same port-type
Port-types have weak semantic cohesion.

Redundant data models Many data-types for representing the same objects of the problem domain.

Whatever types A special data-type is used for representing any object of the problem domain.

The work published in [8] introduces the WSDL discoverability anti-patterns (see
Table 1 for a brief description), measures their impact on both service retrieval effec-
tiveness and human users’ experience, and proposes refactoring actions to remedy the
identified problems. A requirement inherent to apply these actions is that services are

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 3



built in a contract-first manner, a method that encourages designers to first derive the
WSDL contract of a service and then supply an implementation for it. However, the
most used approach to build Web Services by the software industry is code-first, which
means that one first implements a service and then generates the corresponding service
contract by automatically extracting and deriving the interface from the implemented
code. To the best of our knowledge the relationship between the code-first approach and
WSDL anti-patterns has not been studied until now.

The main hypothesis of this paper is that it is possible to detect WSDL anti-patterns
early in the implementation phase by basing on classic API metrics gathered from ser-
vice implementation and an understanding about how WSDL generation tools work. As
explained in [7], the anti-patterns are strongly associated with API design qualitative at-
tributes, in the sense that some anti-patterns spring when well-established API design
golden rules are broken. For instance, one anti-pattern is to place semantically unre-
lated operations in the same port-type, although modules with high cohesion tend to be
preferable, which is a well-known lesson learned from structured design. The goal of
this paper is to detect WSDL discoverability anti-patterns previous to generate WSDL
documents, but by basing on service implementations since the code-first method is
meant to be supported.

3 Hypothesis statements for early WSDL anti-patterns detection

The proposed approach aims at allowing providers to prevent their WSDL documents
from incurring in the WSDL anti-patterns presented in [8] when following the code-
first method for building services. To do this, the approach is supported by two facts.
First, the approach assumes that a typical code-first tool performs a mapping T, formally
T : C → W.

Mapping T from C = {M(I0,R0), ..,MN(IN ,RN)} or the frontend class implement-
ing a service to W = {O0(I0,R0), ..,ON(IN ,RN)} or the WSDL document describing
the service, generates a WSDL document containing a port-type for the service im-
plementation class, having as many operations O as public methods M are defined in
the class. Moreover, each operation of W will be associated with one input message I
and another return message R, while each message conveys an XSD type that stands
for the parameters of the corresponding class method. Code-first tools like WSDL.exe,
Java2WSDL, and gSOAP [9] are based on a mapping T for generating WSDL docu-
ments from C#, Java and C++, respectively, though each tool implements T in a particu-
lar manner mostly because of the different characteristics of the involved programming
languages.

Furthermore, the second fact underpinning our approach is that WSDL discoverabil-
ity anti-patterns are strongly associated with API design attributes [7], which have been
soundly studied by the software engineering community and as a result suites of related
Object-Oriented (OO) class-level metrics exist, such as the Chindamber and Kemerer’s
metric catalog [10]. Consequently, these metrics tell providers about how a service im-
plementation conforms to specific design attributes. For instance, the LCOM (Lack of
Cohesion Methods) metric provides a mean to measure how well the methods of a class
are semantically related to each other, while the “Low cohesive operations in the same

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 4



port-type” measures WSDL operations cohesion. Here, the design attribute under study
is cohesion, the metric is LCOM, and “Low cohesive operations in the same port-type”
is the potentially associated anti-pattern.

By basing on the previous two facts, the idea behind the proposed approach is that
by employing well-known software engineering metrics on a service code C, a provider
might have an estimation of how the resulting WSDL document W will be like in terms
of anti-pattern occurrences, since a known mapping T relates C with W. If indeed such
metric/anti-pattern relationships exist, then it would be possible to determine a range of
metric values for C so that T generates W without anti-patterns in the best case.

We established several hypotheses by using an exploratory approach to test the sta-
tistical correlation among OO metrics and the anti-patterns. For brevity and clarity, next
we show the initial hypotheses that after the statistical analysis proved to hold:

Hypothesis 1 (H1). The higher the number of classes directly related to the class im-
plementing a service (CBO metric), the more frequent the Enclosed data model
anti-pattern occurrences.

Basically, CBO (Coupling Between Objects) [10] counts how many methods or instance
variables defined by other classes are accessed by a given class. Code-first tools based
on T include in resulting WSDL documents as many XSD definitions as objects are ex-
changed by service classes methods. We believe that increasing the number of external
objects that are accessed by service classes may increase the likelihood of data-types
definitions within WSDL documents.

Hypothesis 2 (H2). The higher the number of public methods belonging to the class
implementing a service (WMC metric), the more frequent the Low cohesive oper-
ations in the same port-type anti-pattern occurrences.

The WMC (Weighted Methods Per Class) [10] metric counts the methods of a class.
We believe that a greater number of methods increases the probability that any pair
of them are unrelated, i.e. having weak cohesion. Since T-based code-first tools map
each method to an operation, a higher WMC may increase the possibility that resulting
WSDL documents have low cohesive operations.

Hypothesis 3 (H3). The higher the number of public methods belonging to the class
implementing a service (WMC metric), the more frequent the Redundant data
models anti-pattern occurrences.

The number of message elements defined within a WSDL document built under T-
based code-first tools, is equal to the number of operation elements multiplied by two.
As each message may be associated with a data-type, we believe that the likelihood of
redundant data-type definitions increases with the number of public methods, since this
in turn increase the number of operation elements.

Hypothesis 4 (H4). The higher the number of public methods belonging to the class
implementing a service (WMC metric), the more frequent the Ambiguous names
anti-pattern occurrences.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 5



Similarly to H3, we believe that an increment in the number of methods may lift the
number of non-representative names within a WSDL document, since for each method
a T-based code-first tool automatically generates in principle five names (one for the
operation, two for input/output messages, and two for data-types).

Hypothesis 5 (H5). The higher the number of method parameters belonging to the
class implementing a service that are declared as non-concrete data-types (ATC
metric), the more frequent the Whatever types anti-pattern occurrences.

ATC (Abstract Type Count) is a metric of our own that computes the number of method
parameters that do not use concrete data-types, or use Java generics with type variables
instantiated with non-concrete data-types. We have defined the ATC metric after noting
that some T-based code-first tools map abstract data-types and badly defined generics to
xsd:any constructors, which have been identified as root causes for the Whatever types
anti-pattern [11,8].

Hypothesis 6 (H6). The higher the number of public methods belonging to the class
implementing a service that do not receive input parameters (EPM metric), the
more frequent the Empty messages anti-pattern occurrences. Similarly to ATC, we
designed the EPM (Empty Parameters Methods) metric to count the number of
methods in a class that do not receive parameters. We believe that increasing the
number of methods without parameters may increase the likelihood of the Empty
messages anti-pattern occurrences, because T-based code-first tools map this kind
of methods onto an operation associated with one input message element not con-
veying XML data.

The next section describes the experiments that were carried out to test these six hy-
potheses as well as the relation between other OO metrics not included in the above list
and the studied anti-patterns.

4 Statical analysis and experiments

The approach chosen for testing the hypotheses of the previous section consists on gath-
ering OO metrics from open source Web Services, and checking the values obtained
against the number of anti-patterns found in services WSDL documents, using regres-
sion and correlation methods to validate the usefulness of these metrics for anti-pattern
prediction. To perform the analysis, we first gathered a data-set that contained, for each
service, its implementation code and dependency libraries needed for compiling and
generating WSDL documents. A detailed per-service report of the statistical correlation
between OO metrics taken on the implementation code and anti-pattern occurrences
present in the WSDL documents was built. It is worth noting that both the software and
the data-set used in the experiments are available upon request.

Report calculation has been automatized by using software tools for metrics recol-
lection and anti-patterns detection, since the time needed to manually analyze a Web
Service project was 2 days/developer and it is an error prone task. In the former case,
we extended ckjm [12], a Java-based tool that computes a sub-set of the Chidamber-
Kemerer metrics [10].

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 6



To measure the number of anti-patterns, we employed an automatic WSDL anti-
pattern detection tool [13]. The WSDL Anti-patterns Detector [13], or Detector for
short, is a software whose purpose is automatically checking whether a WSDL docu-
ment suffers from the anti-patterns of [8] or not. The Detector receives a given WSDL
document as input, and uses heuristics for returning a list of anti-pattern occurrences.

In the tests, we used a data-set of around 90 different real services whose imple-
mentation was collected via two code search engines, namely the Merobase compo-
nent finder (http://merobase.com) and the Exemplar engine [14]. We also collected
projects from Google Code. All in all, the generated data-set provided the means to
perform a significant evaluation in the sense that the different Web Service implemen-
tations came from real-life developers.

After collecting the components and projects, we uniformized the associated ser-
vices by explicitly providing a Java interface in order to facade their implementations.
Each WSDL document was obtained by feeding Axis’ Java2WSDL with the corre-
sponding interface. Finally, the correlation analysis was performed by using Apache’s
Commons Math library4, and plots were obtained via JasperReports5.

The rest of the Section is structured as follows. Section 4.1 describes the statistical
correlation analysis between OO metrics and anti-patterns that were performed on the
above data-set. Lastly, Section 4.2 explores several service refactorings at the source
code level and their effect on the anti-patterns of resulting WSDL documents.

4.1 Object-Oriented metrics and WSDL anti-patterns: Correlation analysis

The most common way of analyzing the empirical relation between independent and de-
pendent variables is by defining and statistically testing experimental hypotheses [15].
In this sense, we set the 6 anti-patterns described up to now as the dependent variables,
whose values were produced by using the Detector, while we used OO metrics as the
independent variables, which were computed via the ckjm tool.

Furthermore, we employed extra metrics, namely the LOC (Lines Of Code) metric,
which counts the number of source code lines in a class (including comments), and two
metrics from the work by Bansiya and Davis [16], i.e. DAM (Data Access Metric) and
CAM (Cohesion Among Methods of Class). DAM gives a hint on data encapsulation by
computing the ratio of the number of private (protected) attributes to the total number
of attributes declared in a class, while CAM computes the relatedness among methods
based upon the parameter list of these methods. We also included in our study the
Morris’ AMC (Average Method Complexity) metric [17], i.e. the sum of the cyclomatic
complexity of all methods divided by the total number of methods in a class. Finally,
as suggested earlier, we extended ckjm with a number of ad-hoc measures we thought
could be related to the analyzed anti-patterns, namely TPC (Total Parameter Count),
APC (Average Parameter Count), ATC (Abstract Type Count), VTC (Void Type Count),
and EPM (Empty Parameters Methods).

We used the Spearman’s rank correlation coefficient in order to establish the ex-
isting relations between the two kind of variables of our model, i.e. the OO metrics

4 Apache’s Commons Math library, http://commons.apache.org/math
5 JasperReports, http://jasperforge.org/projects/

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 7



Table 2. Correlation between OO metrics and anti-patterns

Anti-patterns /
Metrics

WMC CBO RFC LCOM LCOM3 LOC DAM CAM AMC TPC APC ATC VTC EPM

AP1 0.86 0.42 0.52 0.36 -0.19 0.49 0.23 -0.69 0.11 0.83 0.38 0.25 0.33 0.33

AP2 0.54 0.20 0.21 -0.07 -0.43 0.20 0.54 -0.48 -0.09 0.17 -0.29 0.19 0.33 0.99

AP3 0.41 0.98 0.38 0.05 -0.16 0.33 0.14 -0.65 0.13 0.35 0.07 0.12 0.37 0.16

AP4 0.61 0.38 0.34 0.0002 -0.31 0.32 0.23 -0.52 -0.01 0.59 0.26 0.12 0.45 0.39

AP5 0.79 0.33 0.47 0.38 -0.15 0.44 0.24 -0.51 0.07 0.71 0.26 0.15 0.23 0.31

AP6 0.50 0.35 0.31 -0.08 -0.35 0.27 0.21 -0.46 0.01 0.42 0.13 0.60 0.52 0.32

(independent variables) and the anti-patterns (dependent variables). Table 2 shows the
correlation between the OO metrics and the anti-patterns, namely Ambiguous names
(AP1), Empty messages (AP2), Enclosed data model (AP3), Low cohesive operations
in the same port-type (AP4), Redundant data models (AP5) and Whatever types (AP6).
The cells values in bold are those coefficients which are statistically significant at the
5% level, i.e. p-value < 0.05, which is a common choice when performing statistical
studies [18]. From the Table, it can be observed that there is a high statistical correla-
tion between a sub-set of the analyzed metrics and the anti-patterns. Concretely, two out
of the fourteen metrics (i.e. WMC and CBO) are positively correlated to four of the six
studied anti-patterns. Furthermore, there are three anti-patterns (Ambiguous names, En-
closed data model and Redundant data models) that are correlated to more than one OO
metric. In this sense, in order to better clarify the analysis of the rationale behind the var-
ious high correlation factors, we selected the smallest sub-set of OO metrics that explain
the six anti-patterns. We obtained two sub-sets, namely < WMC,CBO, ATC, EPM >
and < WMC,CAM, ATC, EPM >. Furthermore, we took the first sub-set as the CBO
metric is more popular among developers and is better supported in IDE tools com-
pared to the CAM metric. Moreover, as will be explained in Section 4.2, in order to
avoid WSDL anti-patterns, early code refactorings by basing on OO metrics values are
necessary. Thus, the smaller the number of considered OO metrics upon refactoring,
the more simple (but still effective) this refactoring process becomes. The results ob-
tained from this correlation analysis show that the hypotheses defined in Section 3 are
supported by our data, thus confirming their validity.

4.2 Early code refactorings for improving WSDL documents

The correlation among the WMC, CBO, ATC and EPM metrics and the anti-patterns,
which were found to be statistically significant for the analyzed Web Service data-
set suggest that, in practice, an increment/decrement of the metric values taken on the
code of a Web Service directly affects anti-pattern occurrence in its code-first generated
WSDL. Then, we performed some source code refactorings driven by these metrics
on our data-set so as to quantify the effect on anti-pattern occurrence. For the sake of

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 8



representativeness, we modified the services that presented all anti-patterns at the same
time, which accounted for a 30% of the entire data-set.

In a first round of refactoring, we focused on reducing WMC by splitting the ser-
vices having too much operations into two or more services so that on average the
metric in the refactored services represented a 70% of the original value. Table 3 shows
the impact on both WMC and its related anti-patterns, i.e. Ambiguous names, Low co-
hesive operations in the same port-type and Redundant data models. As depicted, on
average, these two latter anti-patterns were reduced in 47.26% and 86.66%, respec-
tively. This provides practical evidence to better support part of the correlation analysis
of the previous section.

Table 3. Refactoring: Impact on WMC and its correlated anti-patterns

Metric and anti-patterns Original services
(average)

Refactored services
(average)

WMC 19,32 4,00

Ambiguous names 42,08 42,08

Low cohesive operations in the same port-type 23,40 3,12

Redundant data models 114,00 60,12

Total number of anti-patterns 189,72 135,12

From Table 3, it can be seen that the performed refactoring introduced a significant
increment of the average number of occurrences of the Enclosed data model anti-pattern
while it did not affect the average number of occurrences of the Ambiguous names and
Empty messages anti-patterns. The reasons behind these results are several limitations
on the tool used to generate WSDLs, i.e. Java2WSDL. Despite these limitations, the
total number of occurrences of anti-patterns was reduced in 30% on average.

In a second refactoring round, we focused on the ATC metric, which computes the
number of parameters in a class that are declared as Object or data structures –i.e.
collections– that do not use Java generics. In the latter case, when this practice is fol-
lowed, these collections cannot be automatically mapped onto concrete XSD data-types
for both the container and the contained data-type in the final WSDL. A similar prob-
lem arises with parameters whose data-type is Object. In this sense, we modified the
services obtained in the previous step in order to reduce ATC. Note that since ATC and
WMC do not conflict between each other and at the same time are correlated to different
anti-patterns, results are not affected by the order in which the associated refactorings
are performed. Basically, the applied refactoring was to replace generic arguments with
concrete ones.

By applying these modifications we were able to decrease the number of occur-
rences of the “Whatever types” anti-pattern. Note that the anti-pattern could not be
removed completely as the ATC metric only operates at the service interface level. This
means that if an interface parameter declared as a concrete data-type X has in turn in-

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 9



stance variables/generics with non-concrete data-types, the anti-pattern will nonetheless
appear upon WSDL generation.

5 Related work

Certainly, our work is to some point related to a number of efforts that can be grouped
into two broad classes. On the one hand, there is a substantial amount of research con-
cerning improving services with respect to the quality of the contracts exposed to con-
sumers [19,20,11,7,8]. In particular, [8] subsumes the research mentioned previously,
and also supplies each identified problem with a practical solution, thus conforming a
unified catalog of WSDL discoverability anti-patterns. The importance of these anti-
patterns was measured by manually removing anti-patterns from a data-set of ca. 400
WSDL documents and comparing the retrieval effectiveness of several syntactic dis-
covery mechanisms when using the original WSDL documents and the improved ones,
i.e. the WSDL documents that have been refactored according to each anti-pattern solu-
tions. The fact that the results related to the improved data-sets surpass those achieved
by using the original data-set regardless the approaches to service discovery employed,
provides empirical evidence that suggests that the improvements are explained by the
removal of discoverability anti-patterns rather than the incidence of the underlying dis-
covery mechanism. Furthermore, the importance of WSDL discoverability anti-patterns
has been increasingly emphasized in [7], when the authors associate anti-patterns with
software API design principles. In this sense, we can say that our approach is related to
such efforts since we share the same goal, i.e. obtaining more legible, discoverable and
clear service contracts.

On the other hand, in our approach, these aspects are quantified in the obtained
contracts by means of specific WSDL-level metrics. Furthermore, we found that the
values of such metrics can be “controlled” based on the values of OO metrics taken
on the code implementing services prior to WSDL generation. Then, our approach is
also related to some efforts that attempt to predict the value of quality metrics (e.g.
number of bugs or popularity) in conventional software based on traditional OO metrics
at implementation time [21,22,23].

6 Conclusions

Service contract design, and particularly WSDL document specification, plays the most
important role in enabling third-party consumers to understand, discover and reuse Web
Services [7]. In previous research, it has been shown that Web Services have fewer
chances of being reused unless some common WSDL discoverability anti-patterns are
removed [8]. However, an inherent prerequisite for removing such anti-patterns is that
services are built in a contract-fist manner, by which developers have more control on
the WSDL of their services. Mostly, the industry is based on code-first Web Service
development, which means that developers first derive a service implementation and
then generate the corresponding service contracts from the implemented code.

In this paper, we have focused on the problem of how to obtain WSDL documents
that are free from those undesirable anti-patterns when using code-first. Based on the

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 10



approach followed by several existing works in which some quality attributes of the
resulting software are predicted during development time, we worked on the hypothesis
that anti-pattern occurrences at the WSDL level can be avoided by basing on the value
of OO metrics taken at the code implementing services. We used well-established statis-
tical methods for coming out with the set of OO metrics that best correlate and explain
anti-pattern occurrence by using a data-set of real Web Services. To validate these find-
ings from a practical perspective, we also studied the effect of applying metric-driven
code refactorings to some of the Web Services of the data-set on the anti-patterns in
the generated WSDLs. Interestingly, we found that these code refactorings effectively
reduce anti-patterns, thus improving the resulting service contracts. Although most pop-
ular IDEs semi-automatically assist developers in applying these refactorings, we will
automate them with the help of IntelliJ Idea6, a Java-based IDE that has many built-in
refactoring functions and is designed to be extensible.

The evaluation of this work can be criticized at first sight, by basing on the fact
that we employed only one code-first tool for the test. However, it is worth remark-
ing that many code-first tools base on the same mapping function. Therefore, though
the results cannot be generalized to all available code-first tools, the studied dependent
variables are more likely to be affected by applying refactorings to service implementa-
tions rather than by changing the WSDL generation tool. We will however incorporate
into our analysis less popular but nevertheless other WSDL generation tools such as
EasyWSDL and JBoss’ wsprovide. The goal of this task is bringing our findings to a
broader audience.

Acknowledgments

We acknowledge the financial support provided by ANPCyT (PAE-PICT 2007-02311).

References

1. Cristian Mateos, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Separation of con-
cerns in Service-Oriented Applications based on pervasive design patterns. In Proceedings
of the 2010 Web Technology Track (WT) - ACM Symposium on Applied computing (SAC),
pages 849–853. ACM Special Interest Group on Applied Computing, ACM, 2010.

2. John Erickson and Keng Siau. Web Service, Service-Oriented Computing, and Service-
Oriented Architecture: Separating hype from reality. Journal of Database Management,
19(3):42–54, 2008.

3. Xin Dong, Alon Y. Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang. Similarity search
for Web Services. In Mario A. Nascimento, M. Tamer Özsu, Donald Kossmann, Renée J.
Miller, José A. Blakeley, and K. Bernhard Schiefer, editors, 31th International Conference on
Very Large Data Bases (VLDB 2004), Toronto, Canada, pages 372–383. Morgan Kaufmann,
2004.

4. Marco Crasso, Alejandro Zunino, and Marcelo Campo. Easy Web Service discovery: A
Query-By-Example approach. Science of Computer Programming, 71(2):144–164, 2008.

6 IntelliJ Idea, http://www.jetbrains.com/idea

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 11



5. Laura Rusu, Wenny Rahayu, and David Taniar. Intelligent dynamic XML documents clus-
tering. In 22nd International Conference on Advanced Information Networking and Appli-
cations (AINA 2008), pages 449 –456. IEEE Computer Society, March 2008.

6. Marco Crasso, Alejandro Zunino, and Marcelo Campo. A survey of approaches to Web
Service discovery in Service-Oriented Architectures. Journal of Database Management,
22(1):103–134, 2011.

7. Marco Crasso, Juan Manuel Rodriguez, Alejandro Zunino, and Marcelo Campo. Revising
WSDL documents: Why and how. IEEE Internet Computing, 14(5):30–38, 2010.

8. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo. An analysis
of frequent ways of making undiscoverable Web Service descriptions. Electronic Journal
of SADIO - Special issue of Software Enginneering in Argentina: Present and Future Trends
(Extended version of selected papers ASSE 2009), 9(1):5–23, 2010.

9. Robert Van Engelen and Kyle Gallivan. The gSOAP toolkit for Web Services and peer-to-
peer computing networks. In 2nd IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid (CCGRID ’02), pages 128–135. IEEE Computer Society, 2002.

10. Shyam Chidamber and Chris Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

11. James Pasley. Avoid XML schema wildcards for Web Service interfaces. IEEE Internet
Computing, 10:72–79, 2006.

12. Diomidis Spinellis. Tool writing: A forgotten art? IEEE Software, 22:9–11, 2005.
13. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Automati-

cally detecting opportunities for web service descriptions improvement. In Wojciech Cellary
and Elsa Estevez, editors, Software Services for e-World, IFIP Advances in Information and
Communication Technology, pages 139–150. Springer, 2010.

14. Mark Grechanik, Chen Fu, Qing Xie, Collin McMillan, Denys Poshyvanyk, and Chad
Cumby. A search engine for finding highly relevant applications. In 32nd ACM/IEEE In-
ternational Conference on Software Engineering (ICSE ’10), pages 475–484. ACM Press,
2010.

15. Norman Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing Co., 2nd edition, 1998.

16. Jagdish Bansiya and Carl Davis. A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering, 28:4–17, January 2002.

17. K. L. Morris. Metrics for object-oriented software development environments. Master’s
thesis, M. I. T. Sloan School of Management, 1989.

18. Stephen Stigler. Fisher and the 5% level. Chance, 21:12–12, 2008.
19. Jianchun Fan and Subbarao Kambhampati. A snapshot of public Web Services. SIGMOD

Record, 34(1):24–32, 2005.
20. M. Brian Blake and Michael Nowlan. Taming Web Services from the wild. IEEE Internet

Computing, 12:62–69, September 2008.
21. Ramanath Subramanyam and Mayuram Krishnan. Empirical analysis of CK metrics for

object-oriented design complexity: Implications for software defects. IEEE Transactions on
Software Engineering, 29(4):297–310, 2003.

22. Tibor Gyimothy, Rudolf Ferenc, and Istvan Siket. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Transactions on Software Engi-
neering, 31(10):897–910, 2005.

23. Paulo Meirelles, Carlos Santos Jr., Joao Miranda, Fabio Kon, Antonio Terceiro, and Christina
Chavez. A study of the relationships between source code metrics and attractiveness in free
software projects. In Brazilian Symposium on Software Engineering (SBES ’10), volume 0,
pages 11–20. IEEE Computer Society, 2010.

40JAIIO - ASSE 2011 - ISSN: 1850-2792 - Página 12




