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Abstract—We are facing a hardware revolution given
by the increasing availability of multicore computers,
clusters, Grids, and combinations of these. Conse-
quently, there is plenty of computational power, but
today’s programmers are not fully prepared to exploit
parallelism. Particularly, Java has helped in handling
the heterogeneity of such environments, but there is
a lack of facilities to easily and elegantly parallelizing
applications. One path to this end seems to be the
synthesis of semi-automatic parallelism and Paral-
lelism as a Concern (PaaC). We briefly survey relevant
Java-based parallel development tools, identify their
drawbacks, and discuss some insights of an ongoing
approach for mitigating them.
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I. INTRODUCTION

The advent of powerful parallel environments
doubtlessly calls for new parallel programming tools.
Many existing tools remain hard to use for an average
programmer, and prioritize performance over other
desirable attributes, i.e. code invasiveness and inde-
pendence of the execution environment. Simple par-
allel programming models are essential for helping
“sequential” developers to gradually move into the
mainstream. Low code invasiveness and environment
neutrality are also important since they allow for
hiding parallelism from applications.

In dealing with the software diversity of such
environments –specially distributed ones– Java is
interesting as it offers platform independence and
competitive performance compared to conventional
languages. However, most Java parallel tools have fo-
cused on running on one environment. Besides, they
often offer developers APIs for programmatically
coordinating parallel subcomputations. This requires
knowledge on parallel (or distributed) programming,
and output codes tied to the library used, compro-
mising code maintainability and portability to other

libraries.
This programmatic and intrusive approach to par-

allelism is also followed by several contemporary
parallel languages such as Fortress (Oracle), X10
(IBM) and Axum (Microsoft), but it is still uncer-
tain whether they will be widespread. In fact, other
researchers propose extending conventional program-
ming languages for parallelism instead of creat-
ing parallel languages from scratch, being Intel®
TBB [1] and Apple’s Grand Central Dispatch [2] ex-
amples of such dialects. All in all, parallel program-
ming is nowadays the rule and not the exception.
Hence, researchers and software vendors have put
on their agenda the long-expected goal of versatile
parallel tools delivering minimum development effort
and code intrusiveness.

II. PARALLELISM IN JAVA: BACKGROUND

To date, several Java tools for parallelizing CPU-
hungry applications exist. Regarding multicore pro-
gramming, Doug Lea’s framework [3] and JCilk [4]
extend the Java runtime library with concurrency
primitives. Alternatively, JAC [5] separates applica-
tion logic from thread management via annotations.
Duarte et al. [6] address the same goal by automat-
ically deriving thread-enabled codes from sequential
ones based on algebraic laws.

Regarding cluster/Grid programming, most tools
offer APIs to manually create and coordinate parallel
computations (e.g. JavaSymphony [7], JCluster [8],
JR [9], VCluster [10] and Satin [11]). A distinctive
feature of them compared to other Java libraries for
building classical master-worker applications such as
GridGain [12] or JPPF [13] is that the former group
supports complex parallel applications structures. All
in all, tools in both groups are designed for program-
ming parallel codes rather than transforming ordinary
codes to cluster and Grid-aware ones.
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Broadly, parallel programming is classified into
implicit and explicit [14]. The former allows pro-
grammers to write applications without thinking
about parallelism, which is automatically performed
by the runtime system. However, performance may
be suboptimal. Explicit parallelism supplies APIs
so that developers have more control over parallel
execution to implement efficient applications, but the
burden of managing parallelism falls on them.

Although designed with simplicity in mind, most
efforts are still inspired by explicit parallelism. Par-
allelizing applications requires learning the concepts
and the API of the parallel programming tool used.
Besides, from a software engineering standpoint,
parallelized codes are hard to maintain and port to
other libraries. In addition, these approaches lead
to source code that contains not only statements
for managing subcomputations but also for tuning
applications. This makes such tuning logic obsolete
when an application is ported for example from a
cluster to a Grid.

An alternative approach to traditional explicit par-
allelism is to treat parallelism as a concern, thus
avoiding mixing application logic with code imple-
menting parallel behavior (Figure 1). This has gained
momentum as reflected by Java tools that partly
or entirely rely on mechanisms for separation of
concerns, e.g. code annotations (JAC [5]), metaob-
jects (ProActive [15]) and Dependency Injection
(JGRIM [16]). Other efforts support the same idea
through AOP, and skeletons, which capture recurring
parallel programming patterns such as pipes and
heartbeats in an application-agnostic way. Skeletons
are instantiated by wrapping sequential codes or
specializing framework classes, as in [17], [18].

Current approaches pursuing PaaC fall short with
respect to applicability, code intrusiveness and ex-
pertise. Tools designed to exploit single machines
are usually not applicable to clusters/Grids, and
approaches designed to exploit these settings in-
cur in overheads when used in multicore ma-
chines. Moreover, approaches based on annotations
require explicit modifications to insert parallelism
and application-specific optimizations that obscure
final codes. Metaobjects and specially AOP cope
with this problem, but at the expense of incepting
another programming paradigm. Lastly, tools provid-
ing support for various parallel patterns feature good
applicability in respect to the variety of applications
that can be parallelized, but require solid knowledge
on parallel programming.

We propose EasyFJP, a tool aimed at unexperi-

enced developers that offers means for parallelizing
sequential applications. EasyFJP exploits the concept
of PaaC by adopting a base programming model
providing opportunities for enabling implicit never-
theless versatile forms of parallelism, and by using
generative programming to build code that leverages
existing parallel libraries. Developers proficient in
parallel programming can further optimize generated
codes via an explicit, but non-invasive tuning frame-
work.

III. FORK-JOIN PARALLELISM TO THE RESCUE

Fork-join parallelism (FJP) is a simple but ef-
fective technique that expresses parallelism via two
primitives: fork, which starts the execution of a
method in parallel, and join, which blocks a caller
until the execution of methods finishes. FJP repre-
sents an alternative to threads, which have received
criticism due to their inherent complexity [19]. In
fact, Java, which has offered threads as first-class
citizens for years, includes now an FJP framework
for multicore CPUs (http://openjdk.java.net/projects/
jdk7/features), which is based on Doug Lea’s work.

FJP is not circumscribed to multicore program-
ming, but is also applicable in execution environ-
ments where the notions of “tasks” and “processors”
exist. For instance, forked tasks can be run on a clus-
ter. More recently, Computational Grids, which ar-
range resources from geographically dispersed sites,
have emerged as another environment for parallel
computing. Interestingly, multicore CPUs, clusters
and Grids alike can execute FJP tasks, as they
conceptually comprise processing nodes (cores or
individual machines) interconnected through commu-
nication “links” (a system bus, a high-speed LAN or
a WAN). This uniformity arguably allows the same
FJP application to be run in either environments,
provided there is a platform aware of the underlying
execution support.

Broadly, current Java parallel libraries relying on
task-oriented execution models offer API primitives
to fork one or many tasks simultaneously, which are
firstly mapped to library-level execution units. There
are, however, operational differences among libraries
concerning the primitives to synchronize subcompu-
tations. We have observed that there are two FJP
synchronization patterns: single-fork join (SFJ) and
multi-fork join (MFJ). The former represents one-
to-one relationships between fork and join points:
a programmer must block its application to wait
for each task’s result. With MFJ, the programmer
waits for the results of the tasks launched up to
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Figure 1. Parallelism in Java: Taxonomy

a synchronization call. In the following codes, two
SFJ calls are necessary to safely access the results
of task1 and task2 (top), whereas the same behavior
is achieved with one MFJ call (bottom):

class SomeClass{
void someMethod(){
...
fork(task1);
fork(task2);
SFJ(task1); /* Block until

task1 finishes */
... // Access task1’s result
SFJ(task2); /* Block until

task2 finishes */
... // Access task2’s result

}
}

class SomeClass{
void someMethod(){
...
fork(task1);
fork(task2);
MFJ(); /* Block until task1

and task2 finish */
... // Access either results

}
}

Examples of Java-based parallel libraries and their
support for synchronization patterns are Satin (MFJ),
ProActive (SFJ, MFJ), GridGain (SFJ) and JPPF
(SFJ), which developers take advantage of through
API calls. As discussed, this requires to learn an API,
and ties the code to the library at hand. Even more
important, managing synchronism for real-world ap-
plications is error prone and time-consuming.

IV. FJP AS A CONCERN: EASYFJP

Intuitively, FJP is suitable for parallelizing di-
vide and conquer (D&C) applications, an algorith-
mic abstraction useful to solve many problems. Our
ongoing EasyFJP project [20] is to design source
code analysis algorithms and code generation tech-
niques to automatically introduce SFJ and MFJ into
sequential D&C applications. EasyFJP comprises a

semi-automatic parallelization process (Figure 2) that
outputs library-dependent parallel codes with hooks
for attaching user optimizations.

A. Step 1

First, the sequential application is analyzed to spot
the points within the target method that perform
recursive calls and access to recursive results. These
dependencies are guarded to keep the correctness
of the code. Before feeding EasyFJP, programmers
only have to assign results to local variables. Then,
depending on the target parallel library, EasyFJP
uses an MFJ or a SJF-inspired algorithm to detect
prospective fork and join points. Either paralleliza-
tion algorithms behave heuristically, for example
by minimizing the derived join points. For brevity,
below we discuss the SFJ algorithm; [20] presents a
preliminary version of its MFJ counterpart.

The SJF-based algorithm (see Algorithm 1 and
Table I) works by depth-first walking the instructions
and detecting where a local variable is defined or
used. A local variable is defined, and thus becomes
a parallel variable, when the result of a recursive
method is assigned to it, whereas it is used when
its value is read. Based on the identified join points,
EasyFJP modifies the source code to call a library-
specific join primitive between the definition and use
of any parallel variable, for any possible execution
path. As input, the algorithm operates on a tree
derived from the target method’s code. Nodes in
this tree are method scopes, while arcs represent
relationships between scopes.

B. Step 2

This step involves reusing the primitives of the
target parallel library plus inserting glue code to
invoke (if defined) the user’s optimizations. The
former sub-step also adapts the parallel code to the
application structure prescribed by the library (e.g.
extends from certain API classes, generates extra
artifacts, etc.).
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1  public class BinSearch { 
2   boolean search(int elem,
              int[] array){ 
3    boolean s1, s2 = false;
4    . . .
5    boolean s1 = search(
      elem, halfOne(array));
6    boolean s2 = search(
      elem, halfTwo(array));
7    . . .
8    return s1 || s2;
9   }
10 }
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task-result
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Figure 2. EasyFJP: Parallelization process

Table I
SFJ-BASED ALGORITHM: HELPER FUNCTIONS

Signature Functionality

getParallelVar(aSentence,rootScope) Checks whether aSentence assigns a recursive call to a parallel variable. If so,
the name of the variable is returned, otherwise an empty result is returned.

getParallelVar(aSentence) Returns the name of the parallel variable defined in aSentence.

getFirstUse(varName,aSentence) Returns the first subsequent sentence of aSentence that uses varName. If no
such a sentence if found, an empty result is returned.

getScope(aSentence) Returns the scope to which aSentence belongs.

checkIncluded(aScope,anotherScope) Checks whether aScope is the same scope as anotherScope or is a
descendant of it.

Targeting libraries supporting D&C such as Satin
mostly requires source-to-source translation, as se-
quential methods are forked in the output code via
proper library API calls. For libraries relying on
master-worker or bag-of-tasks execution models (e.g.
Doug Lea’s framework and GridGain), in which
there are not hierarchical relationships between par-
allel tasks, EasyFJP “flats” the task structure of
the sequential application. For illustrative purposes,
Figure 3 shows part of the GridGain code generated
by EasyFJP1 from the BinSearch application shown
in Figure 2.

GridGain materializes SFJ through Java futures.
Lines 19-22 and line 24 represent fork and join
points, respectively. Instances of BinSearchTask per-
form the subcomputations by calling BinSearch-
GridGain.search(int, int[], ExecutionContext) on indi-
vidual pieces of the array. For the sake of simplicity,
this code does not exploit the latest version of the
GridGain API (i.e. 3.5.0) since it is fairly more

1The current version of the GridGain code generator of
EasyFJP is available at http://code.google.com/p/easyfjp-imp/

verbose than its previous versions.

C. Step 3

Programmers can non-invasively improve the ef-
ficiency of their parallel applications via policies,
which are rules that throttle the amount of paral-
lelism. EasyFJP allows developers to specify poli-
cies based on the nature of both their applications
(e.g. using thresholds/memoization) and the execu-
tion environment (e.g. avoiding many forks with
large-valued parameters in a high-latency network).
Policies are associated to fork points through external
configuration and can be switched without altering
parallelized codes. For instance, BinSearch could be
made forking search provided array.length is above
some threshold, otherwise the sequential version of
search is executed:
import easyfjp.core.Policy;
import easyfjp.core.ExecutionContext;

class MyThresholdPolicy implements Policy{
static int MIN_ARRAY_SIZE = 50;
boolean shouldFork(ExecutionContext ctx){
int[] firstArgument = (int[])ctx.getArgument (1);
return firstArgument.length > MIN_ARRAY_SIZE;
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1 import org.gridgain.grid.Grid;
2 import org.gridgain.grid.GridFactory;
3 import org.gridgain.grid.GridTaskFuture;
4 import org.gridgain.grid.kernal.executor.GridExecutorCallableTask;
5
6 class BinSearchGridGain{
7 boolean searchSeq(int elem , int[] array){
8 // Same as BinSearch.search(int, int[])
9 }

10 boolean search(int elem , int[] array){
11 search(elem , array , initContext ());
12 }
13 boolean search(int elem , int[] array , ExecutionContext ctx){
14 if (!getPolicy(ctx.getMethod()). shouldFork(ctx))
15 return searchSeq(elem , array);
16 . . .
17 Grid grid = GridFactory.getGrid();
18 GridExecutorCallableTask exec = new GridExecutorCallableTask ();
19 GridTaskFuture <boolean> s1future =
20 grid.execute(exec , new BinSearchTask(this, ctx, elem , getFirstHalf(array)));
21 GridTaskFuture <boolean> s2future =
22 grid.execute(exec , new BinSearchTask(this, ctx, elem , getSecondHalf(array)));
23 . . .
24 return s1future.get() || s2future.get();
25 }
26 }

Figure 3. Example GridGain code automatically generated by EasyFJP

}
}

ExecutionContext allows users to introspect execution
at both the method level (e.g. accessing parameter
values) and the application level (e.g. obtaining the
current depth of the task tree). In other words, this
object allows developers to access certain runtime
information that refers to parallel aspects of the
application under execution and use the information
to specify tuning decisions.

V. DEVELOPING WITH EASYFJP: FURTHER

ISSUES

Up to this point, we have described the paral-
lelization and tuning process promoted by EasyFJP
to parallelize sequential codes. However, determining
whether a user application will effectively benefit
from using EasyFJP depends on a number of issues
that developers should have in mind. This section
explains what users should expect from our approach
and what not.

A. Performance and backend selection

Feeding EasyFJP with a properly structured code
does not necessarily mean it will benefit from our
parallelization process or even the process will be
applicable. The choice of parallelizing an application
(or an individual method) depends on whether the

method itself can exploit parallelism. In other words,
the potential performance gains in parallelizing an
application is subject to its computational require-
ments, which is a design factor that must be first
addressed by the developer. EasyFJP automates the
process of generating a parallel, tunable applica-
tion “skeleton”, but does not aim at automatically
determining the portions of an application suitable
for being parallelized. Furthermore, the choice of
targeting a specific parallel backend is mostly sub-
ject to availability factors, i.e. whether an execution
environment running the desired parallel library (e.g.
GridGain) is available or not. For example, a novice
developer would likely target a parallel library he
knows is installed on a particular hardware, rather
than the other way around.

Likewise, the policy support discussed so far is
not designed to automate application tuning, but
to provide a customizable framework that captures
common optimization patterns in FJP applications.
Again, whether these patterns benefit a particular
parallelized application depends on its nature. For
example, just a subset of FJP applications can exploit
memoization techniques.

B. Applicability

An issue that may affect applicability is concerned
with compatibility and interrelations with commonly-
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Algorithm 1 The SFJ-based algorithm

procedure IDENTIFYFORKPOINTS(rootScope)
f orkPoints← empty
for all sentence ∈ TRAVERSEDEPTHFIRST(rootScope)

do
varName← GETPARALLELVAR(sentence,rootScope)
if varName 6= empty then

ADDELEMENT(forkPoints,sentence)
end if

end for
return f orkPoints

end procedure
procedure IDENTIFYJOINPOINTS(rootScope, f orkPoints)

joinPoints← empty
for all sentence ∈ f orkPoints do

varName← GETPARALLELVAR(sentence)
currSentence← sentence
scope← true
repeat

useSentence← GETFIRSTUSE(varName,currSentence)
if useSentence 6= empty then

useScope← GETSCOPE(useSentence)
varScope← GETSCOPE(sentence)
if CHECKINCLUDED(useScope,varScope) then

ADDELEMENT(joinPoints,useSentence)
currSentence← useSentence

end if
else

scope← f alse
end if

until scope 6= true
end for
return joinPoints

end procedure

used techniques and libraries, such as multithread-
ing and AOP. In a broad sense, these techniques
literally alter the ordinary semantics of a sequen-
tial application. Particularly, multithreading makes
deterministic sequential code non-deterministic [19],
while AOP modifies the normal control flow of
applications through the implicit use of artifacts
containing aspect-specific behavior. Therefore, when
using EasyFJP to parallelize such applications, vari-
ous compatibility problems may arise depending on
the backend selected for parallelization. Note that this
is not an inherent limitation of EasyFJP, but of the
target backend. Thus, before parallelizing an applica-
tion with EasyFJP, a prior analysis should be carried
out to determine whether the target parallel runtime
is compatible with the libraries the application relies
on.

C. Debuggability

Using EasyFJP does not differ from the pack in
terms of debuggability, in which parallel program-
ming has been historically conceived as a notori-
ously hard task. When not using policies, debugging
EasyFJP applications that target certain backends
should be as difficult as debugging the counterparts
obtained by manually using those backends. Policies
may make debugging more complex as they change

the operational semantics of a program. Nevertheless,
this problem is also shared by approaches to parallel
development based on separating the functional be-
havior of a program from its parallel concerns, such
as those tools that rely on AOP techniques or rules to
parallelize/tune applications. Interestingly, both these
approaches and EasyFJP arguably ease the task of
testing the algorithmic correctness of programs prior
to parallelization, which is more difficult to achieve
with intrusive parallelization tools.

VI. EVALUATION

From a pragmatic perspective, the practical im-
plications of using EasyFJP are determined by two
main aspects, namely how competitive is implicitly
supporting FJP synchronization patterns in D&C
codes compared to explicit parallelism and classical
parallel programming models, and whether policies
are effective to tune parallelized applications or not.
Hence, we conducted experiments in the context of
the MFJ pattern in [20]. Complementary, next we
report experiments with SFJ through our bindings
to GridGain to further analyze the trade-offs behind
using EasyFJP.

As a testbed, we used a three-cluster Grid emulated
on a 15-machine LAN through WANem version 2.2
(http://wanem.sourceforge.net) with common WAN
conditions. We tested a ray tracing and a gene
sequence alignment application, whose parallel ver-
sions were obtained from sequential D&C codes
from the Satin project. Apart from the challenging
nature of the environment, the applications had a high
cyclomatic complexity, thus they were representative
to stress our code analysis mechanisms.

We fed the applications with various 3D scenes
and real gene sequence databases from the National
Center for Biotechnology Information (http://www.
ncbi.nlm.nih.gov). For ray tracing, we used three task
granularities: fine, medium and coarse, i.e. about 17,
2 and 1 parallel tasks per node, respectively. By
“granularity” we refer to the amount of cooperative
tasks in which a larger computation is split for
parallel execution. More tasks means finer granular-
ities. Furthermore, for sequence alignment, we also
employed three granularities, each with a number of
tasks that depended on the size of the input database
for efficiency purposes. For either application, we
implemented two EasyFJP variants by using a thresh-
old policy to regulate task granularity and another
policy additionally exploiting data locality, a feature
of EasyFJP to place tasks processing near parts of the
input data in the same cluster. We developed hand-
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coded GridGain variants through its parallel annota-
tions and its support for Google’s MapReduce [21].
Figures 4 and 5 illustrate the average running time
(40 executions) of the ray tracing and the sequence
alignment applications, respectively.

For ray tracing, the execution times uniformly
increased as granularity became finer for all tests,
which shows a good overall correlation of the dif-
ferent variants. For fine and medium granularities,
EasyFJP was able to outperform their competitors
since SFJ in conjunction with either policies achieved
performance gains of up to 29%. For coarse granular-
ities, however, the best EasyFJP variants introduced
overheads of 1-9% with respect to the most efficient
GridGain implementations. As expected, data locality
turned out counterproductive, because the perfor-
mance benefits of placing a set of related tasks (in
this case those that process near regions of the input
scene) in the same physical cluster scene becomes
negligible for coarse-grained tasks. Again, the most
efficient granularities were fine and medium in the
sense they delivered the best data communication
over processor usage ratio.

For sequence alignment, the running times were
smaller as the granularity increased. Interestingly,
like for ray tracing, EasyFJP obtained better perfor-
mance for the fine granularity, and performed very
competitively for the medium granularity. However,
the GridGain variants were slightly more efficient
when using coarse-grained tasks. In general, data
locality did not help in reducing execution time
because, unlike ray tracing, parallel tasks had a
higher degree of independence. This does not imply
that data locality policies are not effective but their
usage should be decided depending on the nature
of parallelized applications, which enforces similar
previous findings [20].

VII. CONCLUSIONS

EasyFJP offers an alternative balance to the dimen-
sions of applicability, code intrusiveness and exper-
tise that concern parallel programming tools. Good
applicability is achieved by targeting Java, FJP and
D&C, and leveraging primitives of existing parallel
libraries. Low code intrusiveness is ensured by using
mechanisms to translate from sequential to parallel
code while keeping tuning logic away from this latter.
This separation, alongside with the simplicity of FJP
and D&C, makes EasyFJP suitable for gradually
enter the world of parallel programming.

Our experimental results and the ones reported
in [20] confirm that FJP-based implicit parallelism

and policy-oriented explicit tuning, glued together
via generative programming, are a viable approach
to PaaC. Moreover, EasyFJP has the potentiality
to offer a better balance to the “ease of use and
versatility versus performance” trade-off inherent to
parallel programming tools for fine and medium-
grained parallelism, plus the flexibility of generating
code to exploit various parallel libraries. Up to now,
EasyFJP deals with two broad parallel concerns,
namely task synchronization and application tuning.
We are adding other common parallel concerns such
as inter-task communication, and adapting our ideas
to newer parallel environments such as Clouds. This
will certainly more in-depth future research.

Moreover, there is a recent trend that encourages
researchers to create programming tools that simplify
parallel software development. One of the aims of
these tools is reducing the analysis and transforma-
tion burden when parallelizing sequential programs,
which improves programmer productivity [22]. In
this line, we are building an IDE support to simplify
the adoption and use of EasyFJP. As a starting point,
we will adopt Eclipse, which is very popular among
Java developers. Finally, we have produced a ma-
terialization of our ideas to support the development
of parallel applications within pure engineering com-
munities, where scripting languages such as Python
and Groovy are the common choice [23]. At present,
we have redesigned the policy support of EasyFJP
to allows developers to code policies in Java as well
as Python and Groovy. We also plan to materialize
all EasyFJP concepts directly into these scripting
languages. Then, we will investigate how to port and
exploit the parallelization heuristics of EasyFJP apart
from its policy mechanism.

REFERENCES

[1] W. Kim and M. Voss, “Multicore desktop program-
ming with Intel Threading Building Blocks,” IEEE
Software, vol. 28, no. 1, pp. 23–31, Jan. 2011.

[2] V. Nahavandipoor, Concurrent Programming in Mac
OS X and iOS: Unleash Multicore Performance with
Grand Central Dispatch. O’Reilly Media, May
2011.

[3] D. Lea, “The java.util.concurrent synchronizer
framework,” Science of Computer Programming,
vol. 58, no. 3, pp. 293–309, 2005.

[4] J. Danaher, I. Lee, and C. Leiserson, “Programming
with exceptions in JCilk,” Science of Computer Pro-
gramming, vol. 63, no. 2, pp. 147–171, 2006.



This article is a pre-print of the article "C. Mateos, A. Zunino and M. Hirsch: "Parallelism as a concern in Java through fork-join synchronization 
patterns". 4th TTSDP - ICCSA 2012. pp. 49-56. ISBN 978-0-7695-4710-7/12. IEEE. "
The published version is available at http://dx.doi.org/10.1109/ICCSA.2012.18

Fine Medium Coarse

0

50

100

150

200

250

300

350

400

S
ce

ne
 1

 (1
02

4x
10

24
)

S
ce

ne
 1

 (2
04

8x
20

48
)

S
ce

ne
 2

 (1
02

4x
10

24
)

S
ce

ne
 2

 (2
04

8x
20

48
)

S
ce

ne
 1

 (1
02

4x
10

24
)

S
ce

ne
 1

 (2
04

8x
20

48
)

S
ce

ne
 2

 (1
02

4x
10

24
)

S
ce

ne
 2

 (2
04

8x
20

48
)

S
ce

ne
 1

 (1
02

4x
10

24
)

S
ce

ne
 1

 (2
04

8x
20

48
)

S
ce

ne
 2

 (1
02

4x
10

24
)

S
ce

ne
 2

 (2
04

8x
20

48
)

A
v
e

ra
g

e
 e

x
e

c
u
ti
o

n
 t
im

e
 (

s
e

c
o
n

d
s
)

EasyFJP (threshold)

EasyFJP (data locality)

GridGain (MapReduce)

GridGain (annotations)

Figure 4. Ray tracing: Average execution time

[5] M. Haustein and K.-P. Lohr, “JAC: Declarative Java
concurrency,” Concurrency and Computation: Prac-
tice and Experience, vol. 18, no. 5, pp. 519–546,
2006.

[6] R. Duarte, A. Mota, and A. Sampaio, “Introducing
concurrency in sequential Java via laws,” Information
Processing Letters, vol. 111, no. 3, pp. 129–134,
2011.

[7] M. Aleem, R. Prodan, and T. Fahringer, “JavaSym-
phony: A programming and execution environment
for parallel and distributed many-core architectures,”
in Euro-Par 2010 - Parallel Processing, ser. Lecture
Notes in Computer Science. Springer, 2010, vol.
6272, pp. 139–150.

[8] B.-Y. Zhang, Z.-Y. Mo, G.-W. Yang, and W.-M.
Zheng, “Dynamic load-balancing and high perfor-
mance communication in JCluster,” in International
Parallel and Distributed Processing Symposium.
IEEE, 2007, p. 227.

[9] H. Chan, A. Gallagher, A. Goundan, Y. Au Yeung,
A. Keen, and R. Olsson, “Generic operations and
capabilities in the JR concurrent programming lan-
guage,” Computer Languages, Systems and Struc-
tures, vol. 35, no. 3, pp. 293–305, 2009.

[10] H. Zhang, J. Lee, and R. Guha, “VCluster: A thread-
based Java middleware for SMP and heterogeneous
clusters with thread migration support,” Software:

Practice and Experience, vol. 38, no. 10, pp. 1049–
1071, 2008.

[11] R. Van Nieuwpoort, G. Wrzesinska, C. Jacobs, and
H. Bal, “Satin: A high-level and efficient Grid pro-
gramming model,” ACM Transactions on Program-
ming Languages and Systems, vol. 32, pp. 9:1–9:39,
2010.

[12] GridGain Systems, “GridGain = Real Time Big
Data,” http://www.gridgain.com, 2011.

[13] Sourceforge.net, “Java Parallel Processing Frame-
work,” http://www.jppf.org, 2009.

[14] V. Freeh, “A comparison of implicit and explicit
parallel programming,” Journal of Parallel and Dis-
tributed Computing, vol. 34, no. 1, pp. 50–65, 1996.

[15] B. Amedro, D. Caromel, F. Huet, and V. Bod-
nartchouk, “Java Proactive vs. Fortran MPI: Looking
at the future of parallel Java,” in International Par-
allel and Distributed Processing Symposium. IEEE,
2008, pp. 1–7.

[16] C. Mateos, A. Zunino, and M. Campo, “On the eval-
uation of gridification effort and runtime aspects of
JGRIM applications,” Future Generation Computer
Systems, vol. 26, no. 6, pp. 797–819, 2010.

[17] M. Aldinucci, M. Danelutto, and P. Dazzi, “Muskel:
An expandable skeleton environment,” Scalable



This article is a pre-print of the article "C. Mateos, A. Zunino and M. Hirsch: "Parallelism as a concern in Java through fork-join synchronization 
patterns". 4th TTSDP - ICCSA 2012. pp. 49-56. ISBN 978-0-7695-4710-7/12. IEEE. "
The published version is available at http://dx.doi.org/10.1109/ICCSA.2012.18

0

50

100

150

200

E
sc

he
ric

hi
a-

co
li 
(s

iz
e=

42
89

)

In
flu

en
za

 B
 (s

iz
e=

76
72

)

In
flu

en
za

 A
 (s

iz
e=

47
77

)

In
flu

en
za

 A
 (s

iz
e=

96
20

)

In
flu

en
za

 A
 (s

iz
e=

12
32

5)

E
sc

he
ric

hi
a-

co
li 
(s

iz
e=

42
89

)

In
flu

en
za

 B
 (s

iz
e=

76
72

)

In
flu

en
za

 A
 (s

iz
e=

47
77

)

In
flu

en
za

 A
 (s

iz
e=

96
20

)

In
flu

en
za

 A
 (s

iz
e=

12
32

5)

E
sc

he
ric

hi
a-

co
li 
(s

iz
e=

42
89

)

In
flu

en
za

 B
 (s

iz
e=

76
72

)

In
flu

en
za

 A
 (s

iz
e=

47
77

)

In
flu

en
za

 A
 (s

iz
e=

96
20

)

In
flu

en
za

 A
 (s

iz
e=

12
32

5)

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

EasyFJP (threshold)

EasyFJP (data locality)

GridGain (MapReduce)

GridGain (annotations)

Fine Medium Coarse

Figure 5. Sequence alignment: Average execution time

Computing: Practice and Experience, vol. 8, no. 4,
pp. 325–341, 2007.

[18] J. Sobral and A. Proença, “Enabling JaSkel skeletons
for clusters and computational Grids,” in Interna-
tional Conference on Cluster Computing. IEEE,
2007, pp. 365–371.

[19] E. Lee, “The problem with threads,” Computer,
vol. 39, no. 5, pp. 33–42, 2006.

[20] C. Mateos, A. Zunino, and M. Campo, “An approach
for non-intrusively adding malleable fork/join par-
allelism into ordinary JavaBean compliant applica-
tions,” Computer Languages, Systems and Structures,
vol. 36, no. 3, pp. 53–59, 2010.

[21] R. Lämmel, “Google’s MapReduce programming
model — revisited,” Science of Computer Program-
ming, vol. 68, no. 3, pp. 208–237, 2007.

[22] D. Dig, “A refactoring approach to parallelism,”
IEEE Software, vol. 28, no. 1, pp. 17–22, 2011.

[23] C. Mateos, A. Zunino, M. Hirsch, and M. Fernández,
“Enhancing the BYG gridification tool with state-
of-the-art Grid scheduling mechanisms and explicit
tuning support,” Advances in Engineering Software,
vol. 43, pp. 27–43, Jan. 2012.


