©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

Separation of Concerns in Service-Oriented Applications
Based on Pervasive Design Patterns

[Author(s) name(s) and address(es) were removed for blind review purposes]

ABSTRACT

Service-Oriented Computing (SOC) allows developers ttkap-
plications by reusing and invoking Web-accessible sesvi&&OC
promotes loose coupling between applications and servidgsh

has been mostly addressed by using techniques for Sepaddtio
Concerns (SoC). Contemporary-SOC development models base
on SoC either rely on difficult-to-adopt, ad-hoc programgnia-
cilities and languages or fail at isolating applicationsnirdetails

of the application-service interaction. We propose DI4WSOC
programming model that combines the well-known Adapter and
Dependency Injection patterns. DI4WS achieves higheldevke
SoC in service-oriented applications without requiringedepers

to learn such facilities or languages. DI4WS follows a cactr
last approach to service invocation, whereby developessdade
the logic of their applications and then non-invasivelydpt! and
“inject” required services. We present a formula that cauged

to show that such approach allows reducing couplings tacesy
which has a positive effect on application maintenance. An e
pirical comparison of DI4WS with two related approachesls® a
reported, showing that the DI4WS versions of 4 evaluatedicep
tions used less memory and run faster than their countsrpart

Categories and Subject Descriptors

D.2.13 Boftware Engineering: Reusable Software-Reuse mod-
els, H.3.5 [Information Storage and Retrieval]: Online Informa-
tion Services—Web-based services

Keywords

Separation of concerns; Service-oriented computing; Véebi&es;
Contract-last service consumption; Dependency Injection

1. INTRODUCTION

Separation of Concerns (SoC) [13] is both a principle andba pr
cess for building software systems, which states that each c
stituent part of a system should be free of behaviors notrertie
to its functional nature. Traditionally, SoC has been achieby
using modularity, encapsulation and information hidinchteques

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC' 10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$5.00.

in the context of object-oriented programming, or layeredigns

in an architectural one. All in all, the goal of SoC is to siifypl

the management and maintenance of software systems bydprovi

ing the guidelines for creating ordered and clean systengies
Closely related to SoC is the notion of loose coupling, byaluhi

CFhe components of a system know as little details as posfite

each other. In essence, the idea is to allow an individuaboorant
to be altered without affecting the rest of the componergsto en-
able black-box reuse. Component interactions are conteisea
cross-cutting concern and thus the code implementing sueh-i
actions is isolated from the code representing the pure onemt
behavior, or core concern. This practice is fundamentaéfam-
ple in distributed systems, in which the code to actuallypsupthe
interactions between components residing in differenthimeas is
abstracted away from the applications and is placed withirich

dleware instead. Indeed, component interaction is a @oksig

concern as its code necessarily spans through the behaxoole

One of the areas of computing that has seen an ever increasing
degree of application of these notions is Service-Orief@ech-
puting (SOC). SOC is a contemporary computing paradigm that
supports the development of distributed applications iteroge-
neous network environments [5]. With SOC, applicationsharié
by reusing existing third-party components or services @ha in-
voked through specialized protocols. Precisely, the SQ&digm
heavily promotes component reuse in a loosely coupled way [1

Ideally, with-SOC, the client-side of service-oriented logap
tions are made unaware of the details for invoking availaiele
vices, such as interaction protocol, data-type formatstion, and
so forth. In this sense, researchers are actively workingtads
providing tools and programming models to allow client aqel
tions to exploit services while enabling loose coupling. \Web
Services [1] is the-commonest technological choice forizae
the SOC paradigm, the terms “Web Service” and “service” kgl
used interchangeably throughout the rest of the paper.

SoC seems to be the right path towards providing truly loose
coupling in service-oriented applications, as evidengethe large
body of Web Service invocation frameworks based on a diyersi
of traditional SoC techniques (e.g. source code annottoml
aspect-oriented programming). These frameworks commendy
ceed in hiding the physical details for invoking servicest they
still fail at isolating client-side components from the fitacts”,
or interfaces, exposed by the services. This ineffectipg@arh to
SoC leads to in-house components that are subordinatedrde th
party contracts and must be modified and/or re-tested eumgy t
contracts change. In the end, SOC applications result muwsie m
difficult to modify and test. For example, a common requirame
in SOC is to change the provider for a service, howeogtract-
subordinated clients make this task significantly cumbersome.

©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

In this paper we present a new approach to SOC development[10] requires developers to specify expected contractsataa-

called DI4WS that builds upon SoC principles to establisiséy
relationships between client components and serviceaostrCon-
ceptually, we propose to treat third-party contracts aseors and
as such they should not be located within the boundariesiaitcl
applications. This concept is brought down-to-earth asftavace
layer placed between in-house components and servicesdén o
to abstract the former from changes in the contracts. Adegly
client applications can operate with different contragtsatiering
the intermediate layer, while the code implementing its gonents
remains untouched. DI4WS combines the well-known Adaptdr a
Dependency Injection (DI) [6] design patterns to provideedep-
ers with an intuitive programming model to non-intrusivelyitch
among service providers in their applications.

The next section surveys previous SoC-based frameworkiefor
veloping service-oriented applications and explains had\ViZs
improves over them. Section 3 overviews DI4WS. Section 4 dis
cusses a case study, while Section'5 reports an experinevaial
ation. Section 6 presents conclusions and future work.

2. RELATED WORK

From its beginnings, service-oriented development hasmwes
extent relied on SoC. The WSIF [4] and the Apache CXBllow
a layered approach to isolate the code needed to invokecesrvi
but they still arecontract-subordinated approaches. Springhides
concerns related to invoking third-party services, anokedldevel-
opers to indicate how to map a particular contract onto tiséae
interfaces. To this end, developers supply the source cbtieio
applications with annotations that tell Spring how to tfatesthird-
party operations to in-house methods and perform datasge
ping. The weak point of this approach is that contract detal
specific providers remain bundled in such annotations,ishithe
client code is still affected by changes-in contracts.

In addition, there are academic efforts aimed at providiogets
and tools to further isolate service-oriented applicatifrom ser-
vices. WSSI [11] uses aspect-oriented techniques to dysaiyi
replace a certain in-house method with a similar thirdypager-
ation. WSSI aims at fully automating the tasks of discoverg a
invocation of services at runtime, which has historicabtgeived
criticism [12] as it is arguably difficult to incorporate appopri-
ate service into an application without any human intereent

In this sense, some semi-automatic tools for service irti@mta
have been proposed. WSML [2] employs a custom aspect-edent
language, named JAsCo, to introduce a software layer baetage
plications and services. This layer deals with interceptadapting
and forwarding client requests to services based on useidad
code in JAsCo. Though the authors have meticulously positio
their approach from a modeling perspective with respectiated

ligned with actual service contracts. Moreover, theseasgmta-
tives include framework placeholders so the programmeintam
ually customize data-type mapping and solve ambiguitiesttis
requires knowledge on the framework. Nagano et al. [9] refiige
idea by making such specifications more generic and assariat
static stubs with them. By doing so, the same stub can bind to
several Web Services, thereby enabling looser couplingdst
applications and services. However, service interfacest tmeide-
fined using a formalized XML and the generality required by th
client-side specifications comes at the expense of requsignifi-
cant domain knowledge [7].

Roughly, the above efforts can be grouped into two categorie
those that aim at fully isolating client code from all asgeaft Web
Service invocation, including service contracts (i.e. WSM/SSI,
Nagano et al. and Motahari Nezhad et al.), and those that tlo no
(i.e. the rest). The former group attempts to accommodatithr-
faces of the services to be invoked to the ones specified anéee
by developers at design time. The latter group, while effebt
pushes many aspects of service invocation out of the apiplica
logic through techniques such as layering (Daios, WSIF,chpa
CXF) and annotations (Spring), promotes the idea of adgjtia
client code to the contracts of the invoked services. Caresetty,
the application is coupled to particular contracts and thesvily
depends on providers and their contracts, which in turn comp
mises the maintenance of client applications.

Note that these two groups represent in fact two different ap
proaches for invoking Web Services, namely, contractadadtcon-
tract-first development of SOC client applications, resipely. The
dichotomy, which has already installed an arduous debataith
comes to developing the server-side of SOC applicatidmss not
been discussed in the context of client-side development ye

As we mentioned earlier, existing efforts towards conttast
development, i.e. those belonging to the first group, aredas
ad-hoc languages and programming models that are intlyitlife
ficult to adopt. Unlike them, DI4WS merges the pervasive Aeap
design pattern with Dependency Injection (DI), a populagpam-
ming style among developers [6]. Basically, the former egras
a mean to adapt the expected interface of potential serticte
actual contract of a-selected one, while the latter allowdicg-
tions to be free from the client-side code that knows how toke
third-party services. In SoC terms, the Adapter desigrepatl-
lows separating the code that depends on specific servitects)
while DI allows taking out the various administrative taskslved
in invoking services, from the client code.

3. DI4AWS: FIRST ADAPT, THEN INJECT

An interesting implication of using DI in SOC is that cliesitle

research, the soundness of WSML has not been corroborated exapplication logic can be isolated from the details for inngkser-

perimentally yet. Similar to WSML, the Daios framework [fro-
prises a layered architecture that deals with many concetated
to service invocation beneath the application layer. Daidgr-
itizes efficiency and dynamism when invoking services, hawre
its API, although simple, unavoidably leads to in-house jgom
nents that depend on the structure of the messages impiegent
the operations of specific service providers. This is, Daigsplies
a model for representing service inputs and outputs, whistracts
the target service’s internals but not service’s contracts
Motahari Nezhad et al. [10] address this latter problem Ioyise
automatically generating Web Service representativesdoTihis,

Ihtt p://cxf.apache. org
Zntt p: // www. springsource. org

vices/(e.g. URLs, namespaces, port names, protocols, gtith
this in mind, a developer thinks of a Web Service as any otger r
ular component providing a clear interface to its operatiolf a
developer wants to call an external Web Sen8aeith interfacels
from within an in-house componef, a dependency betwedh
andSis established through. This kind of dependency is com-
monly managed by a DI container that injects a proxgi{tet us
sayPg) into C. At runtime, the code of will end up calling any of
the methods declared lgthroughPs, which transparently invokes
the remote service. Interestingly, this mechanism is notigive,
since it only requires to associate a configuration file withalient
application, which is used by the DI container to determirngctv

3http://vwwv. infoq.comarticl es/sosnoski - code-first

components should be injected into other ones.

Client business logic layer
; |
Service Service
proxy A proxy Z

Communication layer

Client business logic layer

Service
Adapter Z

Service
Adapter B

Service
Adapter A

Service
proxy B

Service
proxy Z

Service
proxy B

Service
proxy A

Service proxy layer

Communication layer

Layered architecture of client applications
coupled to particular interfaces

Layered architecture of client applications
decoupled from particular interfaces

Figure 1: Architectural differences.

Although DI provides a fitting alternative to cleanly incorpte
a Web Service into the source code of client applicationgaids
to a form of coupling through which the application is tiedthe
invoked service contracts (i.e. theinterface). In this way, chang-
ing the provider for a service requires to adapt the clieptieation
to follow the new contract. This is illustrated from an atebtural
perspective in the left side of Figure 1, in which the layaerteining
the client business-logic depends on particular proxiesy(tpy-
ers are coupled to underlying ones). At the implementatwgl|
this means to rewrite the portions of the application that e
replaced contradt, which includes operation signatures that are
likely to differ from that of the new contract. This poteriyaim-
plies different operation names and input/return datagypvhich
must be handled by the application by providing code explici

To overcome this problem, DI4WS combines the Dl'and Adapter
patterns to introduce an intermediate layer that allowslkdpers
to seamlessly shift between different contracts. Conelytun-
stead of directly injecting a layer of service proxi€s)(into the ap-
plication, which requires modifying the layer containirg tclient
business logic in such a way it is compatible with the sercime-
tracts (s), DI4WS injects a layer o$ervice adapters (see the right
side of Figure 1). A service adapter is a specialized Webi&erv
proxy, designed through the Adapter pattern, which is nespo
ble for adapting the contract of a particular service adoordo
the contract (specified by the developer at design time) @gde
by the in-house components. We referAg- as an adapter that
accommodates the actual contract of a ser@itethe contract ex-
pected by an in-house componéht In other words, an adapter
carries the necessary logic to transform the operatiorasiges of
the expected client interface to the actual interface oflacted
Web Service. For instance, if a Web Service operation retatlist
of integers, but the application expects an array of floatgraice
adapter would be responsible for performing the type caiwer

Service adapters support the notion of contract-last dpne¢nt
of SOC client applications. As mentioned earlier, whendfelhg a
contract-first approach to service consumption the appdicgode
is made compatible with the interfaces of the Web Servicasas.
Under contract-last, service adapters accommodate tbednes
of the outsourced services to the interfaces designed bgee-
oper but not yet implemented. In this way, changing a semjozs
not affect the logic of the application, as it only requirescbde
another adapter for the new service.

The positive implications of DI4WS on maintainability caa b
quantitatively reflected through the Efferent Coupling XGeft-
ware metric [8]. Ce indicates how much the classes and attesf
within a package depend on classes and interfaces from pelokf
ages. In our case, this metric applies to all the componeitksnw
the code of a client application depending upon external Béb
vices. When building loose-coupled SOC systems, the vdl@zo

©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

should be as low as possible, since Ce represents the ddgtee o
pendency between the functional code of a client applinadiad
the interfaces representing server-side service costract
Formally, if a contract-subordinated SOC application vaitim-
ternal component$C;..Cin} invokesn services{S;..S,}, then a
value ofCe j equals to 1 means that the in-house compornent
is coupled to the contract of thgh service. Then, the Ce value
of contract-subordinated applications can be determine@d=
ErEquj. When each service is invoked from exactly one com-
i=lj=
porllent,Ce is equal ton. Insteadn < Ce < nx mwhen at least one
service is invoked from two or more in-house components. ddnd
DI4WS with the same assumptions, t8e value is always equal
to n. This is because the adapters are the only client-side compo
nents that depend on the service contracts and there is apéead
per service contract, i.e. adapters. Accordingly, DI4WS reduces
Ce in most cases, while not incrementing it in corner ones.
Besides reducing couplings, contract-last outsourcitoyvalde-
velopers to focus on the design, implementation and testeoiri-
house components, and then discover and incorporate tlkedee
services. This separation may improve the developmentepsoc
itself, since these two groups of tasks can be performedoerte
dently by different development teams.

2]

lA Injected
@ cgﬁl(pénent) EEZ:;SS

logic layer

Internal
component
C

Is(The interface

. of the service S) service
(The interface 0O
expected by C) Aséﬂ (? ,?;dyae‘:(er
I
Service
R (A proxy to % invocation
the service S) [@ layer

Figure 2: DI4WS: Component model.

In contrast to other works that follow a contract-last ajggfo
to develop client applications, DI4WS does not require thgre
ers to learn neither new programming languages/framewooks
models. Instead, DI4WS only requires to define at design tirae
interface(s) the in-house components will use to invokedtparty
services. Then, at implementation time, developers codptats
for bridging the differences between the expected intedfaand
those of the selected services. Graphically, this is showig-
ure 2, using the UML 2.0 notation for modeling components.

4. CASE STUDY

To understand the implications of modeling complex applica
tions with DI4WS, next we will perform a qualitative compson
between two implementations of a real application. Unlte éx-
periments described in the next section, the purpose oféuson
is not to assess the efficiency of DI4AWS for invoking servites
provide hints on how to design SOC applications with DI4W&] a
perceive its-implications in the resulting source code.

We separately followed contract-first and DI4WS approactbes
develop a personal agenda that invokes Web Services. Teerjar
agenda was in charge of managing a user’s contact list,ngn
new meetings, and to notify these contacts of new planned-mee
ings. Below we list the tasks carried out by the personal dgen
upon the creation of a new meeting. We assumed that the user of
the personal agenda provides the date, time, participadttoaa-
tion of the meeting:

e Getting a weather forecast for the meeting place at the de-
sired date and time.

e Obtaining the driving directions that each contact participat-
ing in the meeting could employ.

e For each participant of the meeting:

— Including the weather report and the obtained route in-
formation in an email.

— Soell checking the text of the email.
— Sending the email.

The text in italics represents the functionalities thatevéelegated
to third-party Web Services during the development of theeri-
ants of the personal agenda. We employed real-world Wehc@srv
from the data-set described in [3]. Figures 3 and 4 depictdine-
ponent diagrams of the contract-first and the DI4WS versfdhe
example application, respectively. As contract-first dogsisolate
the design of the application components that invoke WehiGesy
(in our case th@ersonalAgenda component) from the interface of

©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

providers. To exemplify this idea, let us suppose we wants@® u
a different Web Service for sending emails, this is, anofher
plementation forEmailSenderService (e.g. SendEmailServi€p
Consequently, IHtmIEmail is no longer valid, which impaatsthe
implementation of the contract-first variant. As suggestedrig-
ure 3 this change forces to modify in the implementatioResgon-
alAgenda the code that invokes operations defined in IHtmIEmail
and the object models of operation arguments. On the othet, ha
as DI4WS pushes the source code that depends on Web Service
contracts out of the application logic via adapters, thangle only
requires to implement the corresponding parameter tremsfiions
within a new adapter and, in turn, inject it.

5. EVALUATION

This section describes experiments for measuring the ihgfac
using DI4WS on performance and memory usage of applications
The motivation for this evaluation finds its roots in the ftuat
DI4WS introduces more indirections between applications\Web

these services, the approach makes such components depend 0seryices, which makes it potentially more inefficient thanikar

the server-side contracts, this is, IWeatherByZifMapQuestSer-
vice®, I1SpellChecket and IHtmIEmail .

IAddContact -

=]

Personal
Agenda

2] | RermovaContact IContactManagement

Contact

Manager IMeetingArrangement

IModifyContact

?WealherByZip ?\IMapOueslseNice CfISpeHChecker (ﬁMm\Eman

proxy P
Weather
Forecaster.

ervice

awij uonejuawsaldwiubisag

proxy P
Spell Email

Checker Sender
Service Service

Route
Information,
Service

\4

Figure 3: Component diagram of the contract-first agenda.

In opposition, when using DI4WS, the expected interfaces fo
potential services are specified at design time, wheredsrntdags
between these client-side interfaces and the server-sidgacts
are iteratively materialized at implementation time via service
adapters. Particularly, at design time the developer fipscthe in-
terfaces IForecast, IRoutelnfo, ISpellChecking and |IH&&iding.

IAddContact I —_

g] oo
IRemoveContact IMeetingArrangement
Contact Personal g
Manager 1 ivContact | A98M92 |Getsetadapters @
Q
—O— E]
"// :
B
?Forecast %Rou(elnb %Spe\lchecking ?Ema\lSending v
. P! P P! p! N
Weather Route Spell Email g
Forecaster Information Checker Sender S
dapter Adapter Adapter Adapter @
3
L X x L :
3
=
2
?IWeatherByZ\p %Mapoueslsarvice ?\Speucr\ecker ?HlmlEma\l 3
3
p P proxy p 5
Weather Route Spell Email ®
Forecaster Information Checker Sender
Service @ ice || Service @[| Service © v

Figure 4: Component diagram of the DI4WS agenda.

All in all, the intermediate adapter layer of DI4WS allows fo
a better support in terms of maintainability when changiexyise

it p: // wwmwv. i nner gear s. com WebSer vi ces/ Weat her ByZi p. asnx
Sntt p://ws.strikeiron.com MapQuest Dri vingDirecti ons2?WsDL
Bt t p://ws. cdyne. cont spel | checker/ check. asmx

Thtt p: //ws. acrossconmuni cati ons. conl Mai | . asmx

frameworks. To conduct the experiments we employed 4 agplic
tions, which were developed by last year software engingesiu-
dents of a SOC cour8eThe applications invoked 6, 4, 4 and 7 ser-
vices, respectively, which were deployed on a Tomcat coatdiy
using Apache CXF. The services had on average 3 operatidhs wi
at least one using complex types or arrays. This enabledrépra-
sentative set of data-type transformations in the regublitapters
and thus provided the basis for a significant evaluation.

On the other hand, 3 alternatives to invoke the offered sesvi
from the applications were implemented: one using Daiosdii]
other one using Spring 2.5 and finally one using DI4WS. We ehos
these tools since Daios is a recent and well-published atiade
Web Service framework, while Spring 2.5 is a framework exten
sively used in the software industry. Moreover, the threerah-
tives promote rather different approaches for separatief Bér-
vice concerns from applications, namely layering, annarat and
object-oriented patterns, respectively.

We executed each application 20 times to measure the average
execution time and memory consumption. To take time metnes
computed the elapsed time by means of the “System.curraetTi
Millis” primitive. The amount of sampling error of this pritive
is 15 milliseconds; but it affects the time measurementscated
with each application variant in the same way. To performahe
located memory measurements, we ugad, an utility included in
Java 6.0 that can-dump the entire object graph of a runninlir app
cation. The experiments were carried out on two computens co
nected through a 54 Mbps Wireless network with excellerk lin
quality. We used a PC with an AMD Athlon XP 2200 (1.75 Ghz.)
and 256 MB RAM-to deploy the Web Services, and a laptop with
an Intel Core2 T5600 (1.83 Ghz. per core) laptop with 1 GB RAM
to run'the client applications.

Table 1 shows the average amount of allocated memory of each
variant per application. To clearly understand these tesitlis
worth mentioning some low level details about the runtinepsut
of each variant. First, Spring 2.5 uses class introspedtiody-
namically proxy services, which results in extra objectd arore
allocated RAM. Similarly, Daios interprets the WSDL documef
a service and loads a front-end to it into main memory. Coihfra
DI4WS directly instantiates concrete adapter classesdoh ser-
vice and injects them into the client application, thus g the
size of the whole service representative. According to, tian

Bt t p: /I seekda. conl provi der s/ abysal . coml SendEmai | Servi ce
Mt t p: /[www. exa. uni cen. edu. ar/ ~cnat eos/ cos

the table it can be seen that the variant using Spring 2.5rieduin
more allocated memory, followed by the variant using Daios
the other hand, the variant using DI4WS required just a 62%-6
of the memory allocated by Spring 2.5.

App. #1 App. #2 App. #3 App. #4

Daios 1019 1012 10.12 10.17
Spring2.5 1349 1347 1350 1355
DI4WS 8.23 8.24 8.26 8.35

Table 1: Averaged allocated memory (MB) of each variant.

ts

The DI4WS variants not only allocated less memory than
counterparts, but also run faster. Figure 5 shows the ageneeru-
tion time of each variant of the test applications. Again,tf@ese
applications, DI4AWS outperformed Daios and Spring 2.5ugjo
the adapters represent another software indirection leetwients
and services. These results may stem from the fact that Raibs
Spring 2.5 variants dynamically build the client-side proveeded
to invoke a service the first time it is accessed, whereas [H4&8/
lies on static proxies, which are generated at implememtatine.
In other words, the execution time associated with eithéo®ar
Spring 2.5 includes the time required to build proxies, lneegboth
frameworks generate proxies at execution time rather tbaeldp-
ment time. This is, they are designed for handling more dyoam
invocation scenarios in which physical aspects of sensceh as
location and protocol are determined at runtime, howeverice
contracts are statically established in-an code-invasasg w

Average execution time (milliseconds)
(less is better)

#1 Appl

PPl #2 Application #3 Application #4

Figure 5: Averaged execution time of each variant.

6. CONCLUSIONS AND FUTURE WORK

The paper described DI4WS, an approach to help developers in
building loosely-coupled service-oriented applicatio@entral to
DI4WS is to treat the contracts of third-party service asmsscut-
ting concern. The proposed direction to deal with such aeonis
to combine two widely-used design patterns. This is quifedint
to that of existing efforts, which are based on difficultadept SoC
techniques, as it can be adopted by using any object-oderte
gramming language and DI container. Moreover, DI4WS nudges
developers to follow a contract-last approach to invokedtpiarty
services. Accordingly, the efferent coupling of SOC apgdiians is
reduced in most cases, while not incremented in corner artesh
has a positive effect on loose coupling and hence applicatiain-
tenance. Besides, experimental results show that DI4WS ok
compromise the performance of the resulting client appboa.

©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

This work represents a step towards answering two imporgant
search questions: a) how the steps of DI4WS for invokingisesy
namely adaptation and injection, impact on the softwareldgv
ment process itself from an engineering point of view?, ancbin
the combination of recent approaches to service discovérigh
use the source code of client-side application componertisitd
service queries [3], and DI4WS-based code help developetisd
covering services more efficiently?.

With respect to a), we are planning to conduct experimenis wi
several software development teams and larger applicatiamd
various service modifiability scenarios, which will allow to em-
ploy representative software metrics. Regarding b), timecture
that drives this idea is that the client-side service irtegt obtained
when using DI4WS may be general yet descriptive enough to re-
trieve potential Web Services. In fact, we have recently parad
the recommendation efficiency for two service discoverytesys
and nearly 400 publicly available Web Services when usiregigs
that were built from DI4WS-based applications and non-D8W
ones. Preliminary results are encouraging and suggestsitag
DI4WS is also beneficial from a practical perspective, aiones
discoverers to quickly find proper services. Opportuniieguture
evaluations include using other service collections.

7. REFERENCES
[1] M. Bichler and K.-J. Lin. Service-Oriented Computing.

Computer, 39(3):99-101, 2006.
M. A. Cibran, B. Verheecke, W. Vanderperren, D. Suvéel an
V. Jonckers. Aspect-oriented programming for dynamic Web
Service selection, integration and managemébtld Wide
Web, 10(3):211-242, 2007.
M. Crasso, A. Zunino, and M. Campo. Query by example for
Web Services. IWMeb Technologies track of the SAC’ 08,
pages 2376-2380. ACM, 2008.
M. J. Duftler, N. K. Mukhi, and A. S. andSanjiva
Weerawarana. Web Services Invocation Framework (WSIF).
In OOPSLA'01. ACM, 2001.
[5]J. Erickson and K. Siau. Web Service, Service-Oriented
Computing, and Service-Oriented Architecture: Sepagatin
hype from realityJournal of Database Management,
19(3):42-54, 2008.
R. Johnson. J2EE development framewokksmputer,
38(1):107-110, 2005.
P. Leitner, F. Rosenberg, and S. Dustdar. Daios: Efftcien
dynamic Web Service invocatiomternet Computing,
13(3):72-80, 2009.
R. C. Martin. Object-oriented design quality metrican A
analysis of dependencieReport on Object Analysis and
Design, 2(3), 1995.
S.Nagano, T. Hasegawa, A. Ohsuga, and S. Honiden.
Dynamic invocation model of Web Services using
subsumption relations. FCWS 04, pages 150-157,
Washington, DC, USA, 2004. IEEE Computer Society.
H. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati. Semi-automated adaptation of service intenasti
In WMV 07, pages 993-1002. ACM, 2007.
M. Pérez Reséndiz and J. O. Olmedo Aguirre. Dynamic
invocation of Web Services by using AOP.IGEEE ' 05,
pages 48-51. IEEE Computer Society, 2005.
[12] S. Ran. A model for Web Services discovery with QoS.

S Gecom Exchanges, 4(1):1-10, 2003.
[13] C. Richardson. Untangling enterprise JaQaeue,

4(5):36-44, 2006.

(2]

(3]

(4]

(6]
(7]

(8]

(9]

[10]

[11]

