
©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

Separation of Concerns in Service-Oriented Applications
Based on Pervasive Design Patterns

[Author(s) name(s) and address(es) were removed for blind review purposes]

ABSTRACT
Service-Oriented Computing (SOC) allows developers to build ap-
plications by reusing and invoking Web-accessible services. SOC
promotes loose coupling between applications and services, which
has been mostly addressed by using techniques for Separation of
Concerns (SoC). Contemporary SOC development models based
on SoC either rely on difficult-to-adopt, ad-hoc programming fa-
cilities and languages or fail at isolating applications from details
of the application-service interaction. We propose DI4WS,a SOC
programming model that combines the well-known Adapter and
Dependency Injection patterns. DI4WS achieves higher levels of
SoC in service-oriented applications without requiring developers
to learn such facilities or languages. DI4WS follows a contract-
last approach to service invocation, whereby developers first code
the logic of their applications and then non-invasively “adapt” and
“inject” required services. We present a formula that can beused
to show that such approach allows reducing couplings to services,
which has a positive effect on application maintenance. An em-
pirical comparison of DI4WS with two related approaches is also
reported, showing that the DI4WS versions of 4 evaluated applica-
tions used less memory and run faster than their counterparts.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse mod-
els; H.3.5 [Information Storage and Retrieval]: Online Informa-
tion Services—Web-based services

Keywords
Separation of concerns; Service-oriented computing; Web Services;
Contract-last service consumption; Dependency Injection.

1. INTRODUCTION
Separation of Concerns (SoC) [13] is both a principle and a pro-

cess for building software systems, which states that each con-
stituent part of a system should be free of behaviors not inherent
to its functional nature. Traditionally, SoC has been achieved by
using modularity, encapsulation and information hiding techniques

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$5.00.

in the context of object-oriented programming, or layered designs
in an architectural one. All in all, the goal of SoC is to simplify
the management and maintenance of software systems by provid-
ing the guidelines for creating ordered and clean system designs.

Closely related to SoC is the notion of loose coupling, by which
the components of a system know as little details as possiblefrom
each other. In essence, the idea is to allow an individual component
to be altered without affecting the rest of the components, i.e. to en-
able black-box reuse. Component interactions are conceived as a
cross-cutting concern and thus the code implementing such inter-
actions is isolated from the code representing the pure component
behavior, or core concern. This practice is fundamental forexam-
ple in distributed systems, in which the code to actually support the
interactions between components residing in different machines is
abstracted away from the applications and is placed within amid-
dleware instead. Indeed, component interaction is a cross-cutting
concern as its code necessarily spans through the behavioral code.

One of the areas of computing that has seen an ever increasing
degree of application of these notions is Service-OrientedCom-
puting (SOC). SOC is a contemporary computing paradigm that
supports the development of distributed applications in heteroge-
neous network environments [5]. With SOC, applications arebuilt
by reusing existing third-party components or services that are in-
voked through specialized protocols. Precisely, the SOC paradigm
heavily promotes component reuse in a loosely coupled way [1].

Ideally, with SOC, the client-side of service-oriented applica-
tions are made unaware of the details for invoking availableser-
vices, such as interaction protocol, data-type formats, location, and
so forth. In this sense, researchers are actively working towards
providing tools and programming models to allow client applica-
tions to exploit services while enabling loose coupling. AsWeb
Services [1] is the commonest technological choice for realizing
the SOC paradigm, the terms “Web Service” and “service” willbe
used interchangeably throughout the rest of the paper.

SoC seems to be the right path towards providing truly loose
coupling in service-oriented applications, as evidenced by the large
body of Web Service invocation frameworks based on a diversity
of traditional SoC techniques (e.g. source code annotations and
aspect-oriented programming). These frameworks commonlysuc-
ceed in hiding the physical details for invoking services, but they
still fail at isolating client-side components from the “contracts”,
or interfaces, exposed by the services. This ineffective approach to
SoC leads to in-house components that are subordinated to third-
party contracts and must be modified and/or re-tested every time
contracts change. In the end, SOC applications result much more
difficult to modify and test. For example, a common requirement
in SOC is to change the provider for a service, howevercontract-
subordinated clients make this task significantly cumbersome.

©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

In this paper we present a new approach to SOC development
called DI4WS that builds upon SoC principles to establish looser
relationships between client components and service contracts. Con-
ceptually, we propose to treat third-party contracts as concerns and
as such they should not be located within the boundaries of client
applications. This concept is brought down-to-earth as a software
layer placed between in-house components and services, in order
to abstract the former from changes in the contracts. Accordingly,
client applications can operate with different contracts by altering
the intermediate layer, while the code implementing its components
remains untouched. DI4WS combines the well-known Adapter and
Dependency Injection (DI) [6] design patterns to provide develop-
ers with an intuitive programming model to non-intrusivelyswitch
among service providers in their applications.

The next section surveys previous SoC-based frameworks forde-
veloping service-oriented applications and explains how DI4WS
improves over them. Section 3 overviews DI4WS. Section 4 dis-
cusses a case study, while Section 5 reports an experimentalevalu-
ation. Section 6 presents conclusions and future work.

2. RELATED WORK
From its beginnings, service-oriented development has to some

extent relied on SoC. The WSIF [4] and the Apache CXF1 follow
a layered approach to isolate the code needed to invoke services,
but they still arecontract-subordinated approaches. Spring2 hides
concerns related to invoking third-party services, and allows devel-
opers to indicate how to map a particular contract onto client-side
interfaces. To this end, developers supply the source code of their
applications with annotations that tell Spring how to translate third-
party operations to in-house methods and perform data-typemap-
ping. The weak point of this approach is that contract details of
specific providers remain bundled in such annotations, thisis, the
client code is still affected by changes in contracts.

In addition, there are academic efforts aimed at providing models
and tools to further isolate service-oriented applications from ser-
vices. WSSI [11] uses aspect-oriented techniques to dynamically
replace a certain in-house method with a similar third-party oper-
ation. WSSI aims at fully automating the tasks of discovery and
invocation of services at runtime, which has historically received
criticism [12] as it is arguably difficult to incorporate an appropri-
ate service into an application without any human intervention.

In this sense, some semi-automatic tools for service invocation
have been proposed. WSML [2] employs a custom aspect-oriented
language, named JAsCo, to introduce a software layer between ap-
plications and services. This layer deals with intercepting, adapting
and forwarding client requests to services based on user-provided
code in JAsCo. Though the authors have meticulously positioned
their approach from a modeling perspective with respect to related
research, the soundness of WSML has not been corroborated ex-
perimentally yet. Similar to WSML, the Daios framework [7] com-
prises a layered architecture that deals with many concernsrelated
to service invocation beneath the application layer. Daiosprior-
itizes efficiency and dynamism when invoking services, however
its API, although simple, unavoidably leads to in-house compo-
nents that depend on the structure of the messages implementing
the operations of specific service providers. This is, Daiossupplies
a model for representing service inputs and outputs, which abstracts
the target service’s internals but not service’s contracts.

Motahari Nezhad et al. [10] address this latter problem by semi-
automatically generating Web Service representatives. Todo this,

1http://cxf.apache.org
2http://www.springsource.org

[10] requires developers to specify expected contracts that are a-
ligned with actual service contracts. Moreover, these representa-
tives include framework placeholders so the programmer canman-
ually customize data-type mapping and solve ambiguities, but this
requires knowledge on the framework. Nagano et al. [9] refinethis
idea by making such specifications more generic and associating
static stubs with them. By doing so, the same stub can bind to
several Web Services, thereby enabling looser coupling between
applications and services. However, service interfaces must be de-
fined using a formalized XML and the generality required by the
client-side specifications comes at the expense of requiring signifi-
cant domain knowledge [7].

Roughly, the above efforts can be grouped into two categories:
those that aim at fully isolating client code from all aspects of Web
Service invocation, including service contracts (i.e. WSML, WSSI,
Nagano et al. and Motahari Nezhad et al.), and those that do not
(i.e. the rest). The former group attempts to accommodate the inter-
faces of the services to be invoked to the ones specified and required
by developers at design time. The latter group, while effectively
pushes many aspects of service invocation out of the application
logic through techniques such as layering (Daios, WSIF, Apache
CXF) and annotations (Spring), promotes the idea of adapting the
client code to the contracts of the invoked services. Consequently,
the application is coupled to particular contracts and thusheavily
depends on providers and their contracts, which in turn compro-
mises the maintenance of client applications.

Note that these two groups represent in fact two different ap-
proaches for invoking Web Services, namely, contract-lastand con-
tract-first development of SOC client applications, respectively. The
dichotomy, which has already installed an arduous debate when it
comes to developing the server-side of SOC applications3, has not
been discussed in the context of client-side development yet.

As we mentioned earlier, existing efforts towards contract-last
development, i.e. those belonging to the first group, are based on
ad-hoc languages and programming models that are intuitively dif-
ficult to adopt. Unlike them, DI4WS merges the pervasive Adapter
design pattern with Dependency Injection (DI), a popular program-
ming style among developers [6]. Basically, the former serves as
a mean to adapt the expected interface of potential servicesto the
actual contract of a selected one, while the latter allows applica-
tions to be free from the client-side code that knows how to invoke
third-party services. In SoC terms, the Adapter design pattern al-
lows separating the code that depends on specific service contracts,
while DI allows taking out the various administrative tasksinvolved
in invoking services, from the client code.

3. DI4WS: FIRST ADAPT, THEN INJECT
An interesting implication of using DI in SOC is that client-side

application logic can be isolated from the details for invoking ser-
vices (e.g. URLs, namespaces, port names, protocols, etc.). With
this in mind, a developer thinks of a Web Service as any other reg-
ular component providing a clear interface to its operations. If a
developer wants to call an external Web ServiceS with interfaceIs
from within an in-house componentC, a dependency betweenC
andS is established throughIs. This kind of dependency is com-
monly managed by a DI container that injects a proxy toS (let us
sayPS) intoC. At runtime, the code ofC will end up calling any of
the methods declared inIs throughPS, which transparently invokes
the remote service. Interestingly, this mechanism is not intrusive,
since it only requires to associate a configuration file with the client
application, which is used by the DI container to determine which

3http://www.infoq.com/articles/sosnoski-code-first

©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

components should be injected into other ones.

Communication layer

...Service proxy layer

Layered architecture of client applications

coupled to particular interfaces

Layered architecture of client applications

decoupled from particular interfaces

Service

proxy Z

Service

proxy B

Service

proxy A

...

Communication layer

Client business logic layer

... Service

proxy Z

Service

proxy B

Service

proxy A

Client business logic layer

Service

Adapter A

Service

Adapter B

Service

Adapter Z

Figure 1: Architectural differences.

Although DI provides a fitting alternative to cleanly incorporate
a Web Service into the source code of client applications, itleads
to a form of coupling through which the application is tied tothe
invoked service contracts (i.e. theIs interface). In this way, chang-
ing the provider for a service requires to adapt the client application
to follow the new contract. This is illustrated from an architectural
perspective in the left side of Figure 1, in which the layer containing
the client business logic depends on particular proxies (grey lay-
ers are coupled to underlying ones). At the implementation level,
this means to rewrite the portions of the application that use the
replaced contractIs, which includes operation signatures that are
likely to differ from that of the new contract. This potentially im-
plies different operation names and input/return data-types, which
must be handled by the application by providing code explicitly.

To overcome this problem, DI4WS combines the DI and Adapter
patterns to introduce an intermediate layer that allows developers
to seamlessly shift between different contracts. Conceptually, in-
stead of directly injecting a layer of service proxies (PS) into the ap-
plication, which requires modifying the layer containing the client
business logic in such a way it is compatible with the servicecon-
tracts (Is), DI4WS injects a layer ofservice adapters (see the right
side of Figure 1). A service adapter is a specialized Web Service
proxy, designed through the Adapter pattern, which is responsi-
ble for adapting the contract of a particular service according to
the contract (specified by the developer at design time) expected
by the in-house components. We refer toASC as an adapter that
accommodates the actual contract of a serviceS to the contract ex-
pected by an in-house componentC. In other words, an adapter
carries the necessary logic to transform the operation signatures of
the expected client interface to the actual interface of a selected
Web Service. For instance, if a Web Service operation returns a list
of integers, but the application expects an array of floats, aservice
adapter would be responsible for performing the type conversion.

Service adapters support the notion of contract-last development
of SOC client applications. As mentioned earlier, when following a
contract-first approach to service consumption the application code
is made compatible with the interfaces of the Web Services ituses.
Under contract-last, service adapters accommodate the interfaces
of the outsourced services to the interfaces designed by thedevel-
oper but not yet implemented. In this way, changing a servicedoes
not affect the logic of the application, as it only requires to code
another adapter for the new service.

The positive implications of DI4WS on maintainability can be
quantitatively reflected through the Efferent Coupling (Ce) soft-
ware metric [8]. Ce indicates how much the classes and interfaces
within a package depend on classes and interfaces from otherpack-
ages. In our case, this metric applies to all the components within
the code of a client application depending upon external WebSer-
vices. When building loose-coupled SOC systems, the value of Ce

should be as low as possible, since Ce represents the degree of de-
pendency between the functional code of a client application and
the interfaces representing server-side service contracts.

Formally, if a contract-subordinated SOC application withm in-
ternal components{C1..Cm} invokesn services{S1..Sn}, then a
value ofCei, j equals to 1 means that the in-house componenti
is coupled to the contract of thejth service. Then, the Ce value
of contract-subordinated applications can be determined by Ce =

m
∑

i=1

n
∑

j=1
Cei, j. When each service is invoked from exactly one com-

ponent,Ce is equal ton. Instead,n ≤Ce ≤ n×m when at least one
service is invoked from two or more in-house components. Under
DI4WS with the same assumptions, theCe value is always equal
to n. This is because the adapters are the only client-side compo-
nents that depend on the service contracts and there is one adapter
per service contract, i.e.n adapters. Accordingly, DI4WS reduces
Ce in most cases, while not incrementing it in corner ones.

Besides reducing couplings, contract-last outsourcing allows de-
velopers to focus on the design, implementation and test of the in-
house components, and then discover and incorporate the needed
services. This separation may improve the development process
itself, since these two groups of tasks can be performed indepen-
dently by different development teams.

Internal
component

C

I (The interface
 of the service S)

s

P (A proxy to
the service S)
s

(The interface
expected by C)

sc

A (Injected
component)
sc

A

Client

business

logic layer

Service

adapter

layer

Service

invocation

layer

Figure 2: DI4WS: Component model.

In contrast to other works that follow a contract-last approach
to develop client applications, DI4WS does not require develop-
ers to learn neither new programming languages/frameworksnor
models. Instead, DI4WS only requires to define at design timethe
interface(s) the in-house components will use to invoke third-party
services. Then, at implementation time, developers code adapters
for bridging the differences between the expected interfaces and
those of the selected services. Graphically, this is shown in Fig-
ure 2, using the UML 2.0 notation for modeling components.

4. CASE STUDY
To understand the implications of modeling complex applica-

tions with DI4WS, next we will perform a qualitative comparison
between two implementations of a real application. Unlike the ex-
periments described in the next section, the purpose of thissection
is not to assess the efficiency of DI4WS for invoking services, but
provide hints on how to design SOC applications with DI4WS, and
perceive its implications in the resulting source code.

We separately followed contract-first and DI4WS approachesto
develop a personal agenda that invokes Web Services. The personal
agenda was in charge of managing a user’s contact list, arranging
new meetings, and to notify these contacts of new planned meet-
ings. Below we list the tasks carried out by the personal agenda
upon the creation of a new meeting. We assumed that the user of
the personal agenda provides the date, time, participants and loca-
tion of the meeting:

• Getting a weather forecast for the meeting place at the de-
sired date and time.

©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

• Obtaining the driving directions that each contact participat-
ing in the meeting could employ.

• For each participant of the meeting:

– Including the weather report and the obtained route in-
formation in an email.

– Spell checking the text of the email.

– Sending the email.

The text in italics represents the functionalities that were delegated
to third-party Web Services during the development of the two vari-
ants of the personal agenda. We employed real-world Web Services
from the data-set described in [3]. Figures 3 and 4 depict thecom-
ponent diagrams of the contract-first and the DI4WS version of the
example application, respectively. As contract-first doesnot isolate
the design of the application components that invoke Web Services
(in our case thePersonalAgenda component) from the interface of
these services, the approach makes such components depend on
the server-side contracts, this is, IWeatherByZip4, IIMapQuestSer-
vice5, ISpellChecker6 and IHtmlEmail7.

IWeatherByZip

Spell
Checker
Service

Route
Information

Service

Weather
Forecaster

Service

Email
Sender
Service

<<proxy>> <<proxy>> <<proxy>> <<proxy>>

IIMapQuestservice ISpellChecker IHtmlEmail

Personal
Agenda

Contact
Manager

IContactManagement

IMeetingArrangement

IAddContact

IModifyContact

IRemoveContact

D
e

s
ig

n
/im

p
le

m
e

n
ta

tio
n

 tim
e

Figure 3: Component diagram of the contract-first agenda.

In opposition, when using DI4WS, the expected interfaces for
potential services are specified at design time, whereas thebindings
between these client-side interfaces and the server-side contracts
are iteratively materialized at implementation time via our service
adapters. Particularly, at design time the developer specifies the in-
terfaces IForecast, IRouteInfo, ISpellChecking and IEmailSending.

IForecast

IWeatherByZip

Spell
Checker
Service

Route
Information

Service

Weather
Forecaster

Service

Email
Sender
Service

<<proxy>> <<proxy>> <<proxy>> <<proxy>>

Weather
Forecaster

Adapter

<<adapter>>

IIMapQuestService ISpellChecker IHtmlEmail

Route
Information

Adapter

<<adapter>>

Spell
Checker
Adapter

<<adapter>>

Email
Sender
Adapter

<<adapter>>

Personal
Agenda

Contact
Manager

IContactManagement

IMeetingArrangement

IAddContact

IModifyContact

IRemoveContact

IGetSetAdapters

IRouteInfo ISpellChecking IEmailSending

D
e

s
ig

n
 tim

e
Im

p
le

m
e

n
ta

tio
n

 tim
e

Figure 4: Component diagram of the DI4WS agenda.

All in all, the intermediate adapter layer of DI4WS allows for
a better support in terms of maintainability when changing service

4http://www.innergears.com/WebServices/WeatherByZip.asmx
5http://ws.strikeiron.com/MapQuestDrivingDirections2?WSDL
6http://ws.cdyne.com/spellchecker/check.asmx
7http://ws.acrosscommunications.com/Mail.asmx

providers. To exemplify this idea, let us suppose we want to use
a different Web Service for sending emails, this is, anotherim-
plementation forEmailSenderService (e.g. SendEmailService8).
Consequently, IHtmlEmail is no longer valid, which impactson the
implementation of the contract-first variant. As suggestedby Fig-
ure 3 this change forces to modify in the implementation ofPerson-
alAgenda the code that invokes operations defined in IHtmlEmail
and the object models of operation arguments. On the other hand,
as DI4WS pushes the source code that depends on Web Service
contracts out of the application logic via adapters, this change only
requires to implement the corresponding parameter transformations
within a new adapter and, in turn, inject it.

5. EVALUATION
This section describes experiments for measuring the impact of

using DI4WS on performance and memory usage of applications.
The motivation for this evaluation finds its roots in the factthat
DI4WS introduces more indirections between applications and Web
Services, which makes it potentially more inefficient than similar
frameworks. To conduct the experiments we employed 4 applica-
tions, which were developed by last year software engineering stu-
dents of a SOC course9. The applications invoked 6, 4, 4 and 7 ser-
vices, respectively, which were deployed on a Tomcat container by
using Apache CXF. The services had on average 3 operations with
at least one using complex types or arrays. This enabled for arepre-
sentative set of data-type transformations in the resulting adapters
and thus provided the basis for a significant evaluation.

On the other hand, 3 alternatives to invoke the offered services
from the applications were implemented: one using Daios [7], an-
other one using Spring 2.5 and finally one using DI4WS. We chose
these tools since Daios is a recent and well-published academic
Web Service framework, while Spring 2.5 is a framework exten-
sively used in the software industry. Moreover, the three alterna-
tives promote rather different approaches for separating Web Ser-
vice concerns from applications, namely layering, annotations, and
object-oriented patterns, respectively.

We executed each application 20 times to measure the average
execution time and memory consumption. To take time metrics, we
computed the elapsed time by means of the “System.currentTime-
Millis” primitive. The amount of sampling error of this primitive
is 15 milliseconds, but it affects the time measurements associated
with each application variant in the same way. To perform theal-
located memory measurements, we usedjhat, an utility included in
Java 6.0 that can dump the entire object graph of a running appli-
cation. The experiments were carried out on two computers con-
nected through a 54 Mbps Wireless network with excellent link
quality. We used a PC with an AMD Athlon XP 2200 (1.75 Ghz.)
and 256 MB RAM to deploy the Web Services, and a laptop with
an Intel Core2 T5600 (1.83 Ghz. per core) laptop with 1 GB RAM
to run the client applications.

Table 1 shows the average amount of allocated memory of each
variant per application. To clearly understand these results, it is
worth mentioning some low level details about the runtime support
of each variant. First, Spring 2.5 uses class introspectionto dy-
namically proxy services, which results in extra objects and more
allocated RAM. Similarly, Daios interprets the WSDL document of
a service and loads a front-end to it into main memory. Contrarily,
DI4WS directly instantiates concrete adapter classes for each ser-
vice and injects them into the client application, thus reducing the
size of the whole service representative. According to this, from

8http://seekda.com/providers/abysal.com/SendEmailService
9http://www.exa.unicen.edu.ar/~cmateos/cos

©ACM, (2010). This is a preprint of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version
was published in Proceedings of the 2010 ACM symposium on Applied computing, http://doi.acm.org/10.1145/1774088.1774263

the table it can be seen that the variant using Spring 2.5 incurred in
more allocated memory, followed by the variant using Daios.On
the other hand, the variant using DI4WS required just a 61%-62%
of the memory allocated by Spring 2.5.

App. #1 App. #2 App. #3 App. #4

Daios 10.19 10.12 10.12 10.17

Spring 2.5 13.49 13.47 13.50 13.55

DI4WS 8.23 8.24 8.26 8.35

Table 1: Averaged allocated memory (MB) of each variant.

The DI4WS variants not only allocated less memory than its
counterparts, but also run faster. Figure 5 shows the average execu-
tion time of each variant of the test applications. Again, for these
applications, DI4WS outperformed Daios and Spring 2.5, though
the adapters represent another software indirection between clients
and services. These results may stem from the fact that Daiosand
Spring 2.5 variants dynamically build the client-side proxy needed
to invoke a service the first time it is accessed, whereas DI4WS re-
lies on static proxies, which are generated at implementation time.
In other words, the execution time associated with either Daios or
Spring 2.5 includes the time required to build proxies, because both
frameworks generate proxies at execution time rather than develop-
ment time. This is, they are designed for handling more dynamic
invocation scenarios in which physical aspects of servicessuch as
location and protocol are determined at runtime, however service
contracts are statically established in an code-invasive way.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Application #1 Application #2 Application #3 Application #4

A
v
e
ra

g
e
 e

x
e
c
u
ti
o
n
 t
im

e
 (

m
ill

is
e
c
o
n
d
s
)

(l
e
s
s
 i
s
 b

e
tt
e
r)

Daios
Spring 2.5

DI4WS

Figure 5: Averaged execution time of each variant.

6. CONCLUSIONS AND FUTURE WORK
The paper described DI4WS, an approach to help developers in

building loosely-coupled service-oriented applications. Central to
DI4WS is to treat the contracts of third-party service as a crosscut-
ting concern. The proposed direction to deal with such a concern is
to combine two widely-used design patterns. This is quite different
to that of existing efforts, which are based on difficult-to-adopt SoC
techniques, as it can be adopted by using any object-oriented pro-
gramming language and DI container. Moreover, DI4WS nudges
developers to follow a contract-last approach to invoke third-party
services. Accordingly, the efferent coupling of SOC applications is
reduced in most cases, while not incremented in corner ones,which
has a positive effect on loose coupling and hence application main-
tenance. Besides, experimental results show that DI4WS does not
compromise the performance of the resulting client applications.

This work represents a step towards answering two importantre-
search questions: a) how the steps of DI4WS for invoking services,
namely adaptation and injection, impact on the software develop-
ment process itself from an engineering point of view?, and b) can
the combination of recent approaches to service discovery,which
use the source code of client-side application components to build
service queries [3], and DI4WS-based code help developers in dis-
covering services more efficiently?.

With respect to a), we are planning to conduct experiments with
several software development teams and larger applications, and
various service modifiability scenarios, which will allow us to em-
ploy representative software metrics. Regarding b), the conjecture
that drives this idea is that the client-side service interfaces obtained
when using DI4WS may be general yet descriptive enough to re-
trieve potential Web Services. In fact, we have recently compared
the recommendation efficiency for two service discovery systems
and nearly 400 publicly available Web Services when using queries
that were built from DI4WS-based applications and non-DI4WS
ones. Preliminary results are encouraging and suggest thatusing
DI4WS is also beneficial from a practical perspective, as it allows
discoverers to quickly find proper services. Opportunitiesfor future
evaluations include using other service collections.

7. REFERENCES
[1] M. Bichler and K.-J. Lin. Service-Oriented Computing.

Computer, 39(3):99–101, 2006.
[2] M. A. Cibrán, B. Verheecke, W. Vanderperren, D. Suvée, and

V. Jonckers. Aspect-oriented programming for dynamic Web
Service selection, integration and management.World Wide
Web, 10(3):211–242, 2007.

[3] M. Crasso, A. Zunino, and M. Campo. Query by example for
Web Services. InWeb Technologies track of the SAC’08,
pages 2376–2380. ACM, 2008.

[4] M. J. Duftler, N. K. Mukhi, and A. S. andSanjiva
Weerawarana. Web Services Invocation Framework (WSIF).
In OOPSLA’01. ACM, 2001.

[5] J. Erickson and K. Siau. Web Service, Service-Oriented
Computing, and Service-Oriented Architecture: Separating
hype from reality.Journal of Database Management,
19(3):42–54, 2008.

[6] R. Johnson. J2EE development frameworks.Computer,
38(1):107–110, 2005.

[7] P. Leitner, F. Rosenberg, and S. Dustdar. Daios: Efficient
dynamic Web Service invocation.Internet Computing,
13(3):72–80, 2009.

[8] R. C. Martin. Object-oriented design quality metrics: An
analysis of dependencies.Report on Object Analysis and
Design, 2(3), 1995.

[9] S. Nagano, T. Hasegawa, A. Ohsuga, and S. Honiden.
Dynamic invocation model of Web Services using
subsumption relations. InICWS’04, pages 150–157,
Washington, DC, USA, 2004. IEEE Computer Society.

[10] H. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati. Semi-automated adaptation of service interactions.
In WWW’07, pages 993–1002. ACM, 2007.

[11] M. Pérez Reséndiz and J. O. Olmedo Aguirre. Dynamic
invocation of Web Services by using AOP. InICEEE ’05,
pages 48–51. IEEE Computer Society, 2005.

[12] S. Ran. A model for Web Services discovery with QoS.
SIGecom Exchanges, 4(1):1–10, 2003.

[13] C. Richardson. Untangling enterprise Java.Queue,
4(5):36–44, 2006.

