
An Evaluation on Developer’s Acceptance of EasySOC:
A Development Model for Service-Oriented Computing

Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

ISISTAN - UNICEN. Campus Universitario, Tandil (B7001BBO), Buenos Aires, Argentina
Tel.:+54 (2293) 43-9682 ext. 35. Fax.:+54 (2293) 43-9683

Also CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas)

Abstract. Due to the ever growing adoption of the Service-Oriented
Computing (SOC) paradigm in the software industry, many researchers have
been working on development models from the perspective of service requesters.
The widely agreed development methodology involves three main activities,
including service discovery, service incorporation into applications, and service
replacement. This is because components within service-oriented applications
need to invoke services that developers must discover, engage, and potentially
replace with newer versions or even alternative services from different providers.
EasySOC [1] is a very recent approach for developing service-oriented
applications that decreases the costs of building this kindof applications, by
simplifying discovery, integration and replacement of services. This paper
reports experiments evidencing the effort needed to start producing service–
oriented applications with EasySOC. Results show that users non experienced in
SOC development perceive that EasySOC is convenient and easy to adopt.

Keywords: Service-Oriented Computing; Contract-last Service Consumption; Development Models; Developers’
Acceptance; Start-up Curve For Building Service-OrientedApplications

1 Introduction

Service-Oriented Computing (SOC) is a new paradigm that supports the development
of distributed applications in heterogeneous environments [2]. SOC is a way of
structuring third-party software components, which are offered as publicly available
services, to accomplish a number of functional requirements. This naturally allows
for a multiplicity of definitions of SOC since many relatively similar arrangements of
services are possible. However, the general consensus frommost available definitions
is that there are three starring players within the SOC paradigm: a service provider, a
service consumer and a service registry [3]. Providers are entities such as practitioners,
companies or governmental organizations that expose services. Consumers are other
entities looking for such services to integrate them into their applications. The point
of the registry is for providers to advertise their services, so that consumers looking
for such services can easily locate and use them. In this context, a service is a
software component offered by a provider through a publicly available interface, or
“technical contract” [4]. The terms “service interface” and “service contract” will be
used interchangeably in the paper.

A service-oriented application can be viewed as a component-based application that
is created by assembling together two types of components:internal, which are those
locally embedded into the application, andexternal, which are those bound to existing
third-party services [5]. Many enterprises in their early use of SOC assume that they
canservify1 existing applications just by concealing the details for remotely invoking
services (interaction protocols, data-type formats, and distribution) behind local service
proxies. Manually looking for a service contract that offers a desired functionality,
interpreting its contract to generate client-side code forrepresenting the remote service,
and adapting internal components to make them compatible with the service interface,
is by now commonplace in the software industry. This methodology for developing
service-oriented applications is known as “contract-first” [6].

Although the contract-first methodology allows separatingbusiness logic from
technical aspects related to remote service calls, it stillfails at isolating internal
components from the interfaces of the services. This is because those internal
components depending on a service are tightly coupled to theinterface prescribed
by the service provider. Then, internal components that aresubordinated to particular
service interfaces have to be modified and/or re-tested every time providers perform
changes. In an open world setting, where services are built by different organizations,
it is not necessarily true that all the available implementations of an abstract service
contract expose the same public interface [7], or that service interfaces do not suffer
modifications. Therefore, as service replacement may be a recurrent situation, contract-
first applications result more difficult to modify and test.

During the last year, a new approach to develop service-oriented applications has
been proposed. The novelty introduced by this new approach is that internal components
must adhere to abstract interfaces standing for services, but developers must first specify
such interfaces instead of interpreting those described inservice contracts. Accordingly,
abstract interfaces may differ from actual service interfaces, thus this approach separates
internal components from service contracts. Then, at design time, logical interactions
among internal components and services are modeled throughabstract interfaces,
without considering neither thedistribution and communicationconcerns nor third-
party contracts. Conceptually, this is done by introducingan intermediate software
layer that adapts abstract interfaces to actual service interfaces, isolating application
components from the details of specific services. Since the development of abstract
interfaces and the internal components that interact with them can take place before
discovering third-party services, this approach is called“contract-last” or “code-
first” [5]. In this context, “code” refers to the source code artifacts implementing the
behavior of internal components and the interfaces of external ones.

It has been shown that this approach achieves better component decoupling
than contract-first, by reducing efferent couplings among internal and external
components [6]. Unfortunately, when software engineers decide to adopt the code-
first approach, developers find that most existing frameworks in this direction are
based on ad-hoc techniques that force them to put additionalefforts to achieve mastery
in these techniques. Another obstacle that hinders the adoption of code-first is that,
traditionally, SOC development has heavily relied on contract-first frameworks, such as

1 To incorporate services into applications.

the WSIF [8], the Apache CXF2, Spring3 and Eclipse WTP4. Therefore, building truly
loose coupled service-oriented applications using the code-first approach, imposes a
radical shift in the way applications are developed by the software industry. This means
that a company willing to follow code-first methods to start producing service-oriented
applications, orservifysome pieces of an already existing product, would have to invest
much time in training its development team, which results ina costly start-up curve.

In [1] we proposed EasySOC, a model for constructing service-oriented applications
that encourages developers to firstly design, implement andtest the internal components
of an application, and focus on the servification of the application afterward. EasySOC
advocates the code-first approach. One main difference among EasySOC and others
code-first approaches is that it uses pervasive design patterns to establish looser
relationships between internal components and service contracts. With EasySOC, the
Adapter design pattern [9] enables internal components to seamlessly operate with
different contracts by altering certainadaptersthat are responsible for dealing with the
adaptation concern. The Dependency Injection (DI) [10] design pattern is employed for
assembling internal components and adapters. Therefore, replacing any service involves
disassembling the internal components with the old adapter, building a new adapter and
assembling these components with it, while the internal components remain untouched.

EasySOC comes with a tool-box specially designed for accompanying developers
during the life-cycle of their SOC applications [5,1]. The tool-box performs some
development tasks on behalf of the users. Among these tasks it is worth remarking the
generation of effective queries for discovery, the adaptation between expected interfaces
and actual services, the assembly of internal components depending on services, and
the replacement of a service. Consequently, the EasySOC tool frees developers from
dealing with technological details for discovering, invoking and assembling services,
such as reaching a registry, preparing queries, interpreting search results, building
proxies, and finally adapting and injecting them into targetapplications.

In [5] we reported experiments measuring the implications of using the EasySOC
development model and its tool-box to build service-oriented applications in terms
of the effort needed to discover external services, and memory and CPUoverheads
introduced by service adapters. As a complement, this paperrepresents a step towards
assessing the impact of EasySOC on the software developmentprocess itself from an
engineering point of view. Concretely, we performed further experiments to test the
following hypothesis: understanding pervasive design patterns (i.e. Adapter and DI)
and the philosophy behind code-first are the only required intellectual activities to
start developing service-oriented applications with EasySOC, which should sharpen
the learning curve needed to develop truly loose coupled service-oriented applications.
The hypothesis has been tested with 45 postgraduate and undergraduate students of the
Systems Engineering program at the UNICEN during 2009. Results showed that they
perceived that the proposed approach is convenient and thusmay be easily adopted.

Basing on the fact that the surveyed students had very good programming skills
but not much background on service orientation prior to the experiment, and assuming

2 http://cxf.apache.org
3 http://www.springsource.org
4 http://www.eclipse.org/webtools

that this is the initial state of development teams planningto adopt the SOC paradigm,
results suggest that EasySOC may speed up the development ofservice-oriented
applications in real-world software factories. This also assumes that developers are
accustomed to employ design patterns, which holds as today’s enterprise frameworks
and IDEs commonly enforce the usage of patterns such as Adapter and DI [10].

The rest of the paper surveys approaches for developing service-oriented
applications (Section 2), explains how EasySOC improves over them (Section 3), briefly
presents its tool-box (Section 4), describes the experimental evaluation (Section 5), and
finally presents conclusions and future work (Section 6).

2 Related work

Common software industry frameworks for invoking externalservices mislead
developers to the path of coupling specific interfaces in their service-oriented
applications, thus the business logic is affected by changes in service interfaces.
Other efforts aimed at providing programming models to further isolate applications
from services by exploiting the principle of separation of concerns. WSSI [11] uses
aspect-oriented techniques to dynamically replace a method with a similar operation
offered by an external service. WSSI aims to automatically discover and adapt services
at run-time, which has been criticized [5] since it is arguably difficult to incorporate an
appropriate service into an application without any human intervention.

In this sense, similar but semi-automatic tools have been proposed. WSML [12]
employs an aspect-oriented language, named JAsCo, to intercept and adapt client
requests to actual service contracts, based on user-provided code in JAsCo. Other
two works [13,7] propose to semi-automatically generate service representatives that
adapt client-side and third-party contracts. Conceptually, these two approaches require
developers to specify how the expected interfaces look likeand how a certain pair of
expected and actual interfaces should be aligned. To this end, in [13] representatives
include framework placeholders in which the programmer canmanually specify the
code needed to resolve ambiguities, which requires knowledge on the framework.
In [7], such specifications are stated by using a custom XML language of common
mapping functions. This idea is refined in [14], by making such specifications more
generic and associating static stubs with them. By doing so,the same stub can bind to
several services. However, service interfaces the generality required by the client-side
specifications comes at the expense of requiring significantdomain knowledge.

The above efforts accommodate the interfaces of the services to the ones specified
and required by developers at design time. These efforts are based on ad-hoc
languages and programming models that are intuitively difficult to adopt. Unlike them,
EasySOC combines the Adapter design pattern with Dependency Injection (DI), a
popular programming style among developers [5]. Moreover,though the authors of
the mentioned efforts have meticulously positioned their approaches from a modeling
perspective with respect to related research, the soundness of [12,7,14] has not been
corroborated experimentally yet. On the other hand, the feasibility of EasySOC has
been empirically evaluated and reported [6,1,5]. The next section presents EasySOC in
detail, while an assessment of its acceptance is presented in Section 5.

3 The EasySOC development model

The process to develop service-oriented applications withEasySOC consists of two
groups of tasks. The first group includes design, implementation and test of internal
components, whereas activities in the second group deal with servification of external
components.Servifying with EasySOC involves three steps: (1) finding a list of
candidate services, (2) selecting an individual service from this list, and (3) injecting
an adapted representative of the selected service into the application.

A service adapter
component

A proxy to
the service

Injected
component

Client

business

logic layer

Service

adapter

layer

Service

invocation

layer

Internal
components

The interface
expected by the

internal components

C’

C’’

As

Ps

As

The interface
offered by the

external service

Is

Is

Fig. 1. Anatomy of EasySOC applications.

The EasySOC servification method takes as input an incomplete application, where
some of its constituent components are implemented, and others are intended to be
outsourced to services. Graphically, this kind of applications is shown in Fig. 1, using
the UML 2.0 notation for modeling components. Based on the dependencies between
the internal and the external components of the input application, the aforementioned
three steps are iteratively applied to quickly and seamlessly associate an individual
service with each one of the external components. Overall, the discovery-selection-
injection sequence is performed until all external components of the input application
have been associated with a service. Under a service replacement scenario, steps 2 and 3
should be re-performed.

As a result of performing the three-step process, a developer thinks of a service as
any other regular component providing a clear interface to its operations. If a developer
wants to call an external serviceS with interfaceIS from within internal componentsC

′

andC
′′

, a dependency among these two latter andS is established throughIS. This kind
of dependency is commonly managed by a DI container that injects a proxy toS (let
us sayPS) into C

′

andC
′′

. At run-time, the code of the internal components will end
up calling any of the methods declared inIS throughPS, which transparently invokes
the remote service. Interestingly, this mechanism is not intrusive, since it only requires
to associate a configuration file with the client application, which is used by the DI
container to determine which components should be injectedinto other ones.

Although DI provides a fitting alternative to cleanly incorporate a service into an
application, it leads to a form of coupling through which theapplication is tied to the
invoked service contracts (i.e.IS). In this way, changing the provider for a service
requires to adapt the client application to follow the new contract. To overcome this

problem, EasySOC takes DI a further step and combines it withthe Adapter pattern
to introduce an intermediate layer that allows developers to seamlessly shift between
different contracts. Conceptually, instead of directly injecting a layer of service proxies
(PS) into the application, which requires modifying the layer containing the client
business logic in such a way it is compatible with the servicecontracts (IS), EasySOC
injects a layer ofservice adapters.A service adapter is a specialized proxy, which adapts
the interface of a particular service according to the abstract interface (specified by the
developer at design time) expected by the internal components. We refer toAS as a
service adapter that accommodates the actual interface of aserviceS to the interface
expected by internal components.

In other words, service adapters carry the necessary logic to transform the operation
signatures of the interfaces expected by clients to the actual interfaces of selected
services. For instance, if a service operation returns a list of integers, but the application
expects an array of floats, a service adapter would perform the type conversion.

The next section describes the tool-box provided by EasySOC, which allows
developers to perform the first and third steps of the proposed servificationmethod
automatically and semi-automatically, respectively.

4 Supporting tool-box

Despite the positive aspects of the proposed development model to decouple service
consumers and providers, the solution to the problem relieson the tasks of discovering
services, adapting service interfaces and assembling dependencies into dependants,
which are not trivial and might involve high development costs. To overcome these
costs, we have built a plug-in for the Eclipse IDE that aims atautomatically performing
these tasks on behalf of SOC application developers. The tool has been designed to
implement the SOC paradigm using Web Service technologies [2] and Java. Tutorials,
screen-shots and a setup file can be downloaded from the plug-in home page5. The next
subsections describe the discovery and incorporation modules of the tool-box.

4.1 Service discovery

The EasySOC tool-box exploits the concept of Query-By-Example for Web Services
and the approach to generate queries described in [15]. Thisconcept suggests that
because of the structure inherent to code-first applications, an abstract interface (IS) can
be seen as an example of what a developer is looking for. Consequently, the EasySOC
tool-box gathers certain information that is implicitly conveyed in the source code of
external component interfaces, which is preprocessed to build a refined description of
developers’ needs. Accordingly, an effective query is generated provided developers
follow documenting and naming best practices in their service-oriented applications.
This is because the query generation heuristic gathers relevant terms from the names,
comments, and operations and arguments of an interface. Finally, the query is sent to a
registry and returned results are presented to developers.

5 http://sites.google.com/site/easysoc/home/service-adapter

4.2 Service Incorporation and replacement

A proxy to
the service

Internal
components

C’

C’’

A service adapter
component

C’

C’’

As

Ps

Injected
component

Client

business

logic layer

Service

adapter

layer

Service

invocation

layer

C’

C’’

As

Ps

As

Automatic generation of

 a proxy to the service

Semi−automatic generation of

a service adapter

Automatic generation of

the DI container configuration

1

2

3

Ps

Fig. 2. Development steps with EasySOC tool-box.

The EasySOC tool-box automatically carries out the adaptation and assembling
tasks described early. To do this, once an external service is selected, proxy construction
is automatically performed by the tool-box (see Fig. 2 step 1). Then, the tool-box tries to
build an adapter to map the interface of the proxy onto the abstract interface that internal
components expect (see Fig. 2 step 2). Finally, the tool-boxindicates the DI container
how to assemble internal components and service adapters together (see Fig. 2 step 3).

The current implementation of the EasySOC tool-box employsAxis2 for building
service proxies, and Spring as the DI Container. Building a proxy with Axis2 involves
giving as input the interface description of the target service (a WSDL6 document) to
a command line tool. To setup the DI container, the names of dependants and services
must be written in an XML file. For adapting external service interfaces to the internal
abstract ones, we have designed an algorithm based on the work published in [16].

Our algorithm takes two Java interfaces as input and returnsthe Java code of a
service adapter. To do this, it starts by detecting to which operations of one interface
should be mapped the operations offered by the other. The algorithm determines
operation similarity by comparing names, documentation, and data-types and names
of arguments. Data-types similarity is based on a pre-defined similarity table that
assigns similarity values to pairs of simple data-types. The similarity between two
complex data-types is computed in a recursive way. Once a pair of operations has
been chosen, service adapter code is generated. To do this, the algorithm adapts
simple data-types by taking advantage of type hierarchies and performing explicit
conversions (castings). Complex data-types are resolved recursively as well. Clearly,
not all available mismatches are covered by the algorithm, thus developers should revise
the generated code, which makes the incorporation step semi-automatic.

6 http://www.w3.org/TR/wsdl

5 Experiments

This section introduces the experiments that were performed in order to assess whether
the EasySOC development model has an acceptable difficulty of adoption by novice
developers. The experiments involved 45 students and a two-phase homework, after
which the students were asked to complete a survey to collecttheir opinions about
the whole experience. The work was carried out individuallyby the students, and
each part of the work impacted on the partial and final grades for the course. This
contributed to ensure a high level of commitment with the evaluation. As the experiment
involved the use of a tool-box of our own, which might represent a threat to validity,
the students were not tell about the secondary goal of the homework, and precise and
careful instructions prior to take the survey were emailed to them to ensure objectivity.

The experiments were in the context of the “Service-Oriented Computing”7 course
of the Systems Engineering at the Faculty of Exact Sciences (Department of Computer
Science) of the UNICEN during 2009. The course was also offered in 2008, is optional,
and its audience are last-year undergraduate students and postgraduate students (both
master and doctoral programs) without knowledge on SOC concepts. The course
requirements are excellent skills on programming and some experience with Java
development. In 2009, the course was taken by 38 undergraduate students, and 7
postgraduate students from four different Universities.

After five lectures within one week of three hours each discussing the fundamentals
of the SOC paradigm and enabling technologies the students were instructed to develop
a service-based personal agenda software by outsourcing some Web Services from
a registry given as an input. The course content comprises traditional technologies,
such as WSDL, SOAP, Eclipse WTP, WSIF, but also EasySOC. Basically, the main
responsibilities of the personal agenda software was to manage a user’s contact list and
to notify these contacts of events related to planned meetings. The contact list was a
collection of records, where each record keeps informationabout an individual such as
name, location, email, and so on. The students were also given a pseudo-algorithm of
the functionality for arranging meetings, and some hints onwhich components of the
agenda software could be outsourced to Web Services.

The development of the software involved two phases. The second assignment was
given after finishing the first one. In the first phase, the students implemented the agenda
software by using traditional Web Service technologies from the set of alternatives
discussed in the course lectures. Basically, the technologies were needed to inspect
the service registry and to consume and incorporate selected services into the software.
In the second phase, the students developed the same software by using EasySOC.
Therefore, in principle, the first phase required an initialexploratory research in order
to come out with the technologies to be used, whereas the second phase involved the use
of EasySOC and as such did not required much effort in this respect. The assignments
were developed based on the Eclipse IDE. In both phases, the students exercised three
aspects inherent to developing SOC applications, namely:

1. Service discovery: In the first phase, this was carried out by inspecting the input
service registry through a “Google-like” GUI that supported keyword-based search

7 http://www.exa.unicen.edu.ar/~cmateos/cos

of Web Services. In the second phase, this was performed by using the Web Service
discovery support of EasySOC.

2. Service incorporation: In the first phase, this involved building service proxies
based on the service invocation capabilities of the Web Service technology
individually chosen by each student, whereas in the second phase this was
uniformly handled by using the incorporation facilities ofEasySOC.

3. Service replacement: The input service registry had several implementations for the
Web Services needed to develop the agenda software. The students were asked to
change the provider for a half of the outsourced servicesafter implementing their
software. For both phases, this involved repeatedly performing (1) followed by (2)
on the already implemented agenda.

To better prepare the students to fill out the survey, we addedsome general “warming
up” questions at the beginning of the survey, asking for example what is SOC and what
kind of applications actually benefits from it. Then, we included several query items
designed to collect the students’ opinions with respect to the three aspects mentioned
above. By following Likert’s approach to build questionnaires [17], the items were not
plain questions but statements to which the students could either totally agree, agree,
somewhat agree, somewhat disagree, disagree or totally disagree. In this sense, the
students did not felt evaluated but consulted. We employed an even-numbered scale of
agreement to better capture the students’ opinions (no neutral mid-point). Additionally,
they had to provide a textual justification for each item. We also reserved a check box
to indicate the perceived overall difficulty of the course and its assignments, and a text
field through which any further comments could be specified.

Given the different formation levels of the students involved in the experiments,
the next two subsections will analyze the results by considering the opinions of the
postgraduate students (PGS) and undergraduate students (UGS), respectively. Table 1
summarizes the survey query items (warming up questions have been omitted) and
results. Query items were arranged in two groups, i.e. thoseasking whether students
would use either approaches for developing service-oriented applications (items 1-2),
and those evaluating the suitability of the EasySOC model according to the aspects that
are inherent to SOC development from a software engineeringperspective (items 3-6).

5.1 Postgraduate students: Survey analysis

For the first group of items, none of the surveyed postgraduate students completely
agreed to using any of the two approaches for developing their service-oriented
applications, as shown in Table 1. However, 85% of the students either agreed or
somewhat agreed to the idea of “using EasySOC in early stagesof development”, since
the pattern-based programming model of EasySOC could lead to some adaptation effort
when servifying existing applications in order to made themcompliant to the EasySOC
application anatomy. However, the same students said that they would definitively use
the tool in the presence of large service registries whose functional content is not known
regardless the development stage. This is precisely the case of open contemporary
massively distributed environments such as the Web or Grids, in which thousands of
services are offered and therefore it is crucial to have effective and efficient discovery

Query item
Totally
agree

Agree
Somewhat
agree

Somewhat
disagree

Disagree
Totally
disagree

I would always develop
any SOC application as
in the 1st phase

UGS=1 (3%) UGS=5 (13%) UGS=18 (47%) UGS=7 (18%) UGS=6 (16%) UGS=1 (3%)

PGS=0 (0%) PGS=1 (14%) PGS=2 (29%) PGS=1 (14%) PGS=2 (29%) PGS=1 (14%)

I would always develop
any SOC application as
in the 2nd phase

UGS=1 (3%) UGS=16 (42%) UGS=15 (39%) UGS=3 (8%) UGS=2 (5%) UGS=1 (3%)

PGS=0 (0%) PGS=5 (71%) PGS=1 (14%) PGS=0 (0%) PGS=1 (14%) PGS=0 (0%)

EasySOC materializes
the triad SOC model

UGS=1 (3%) UGS=9 (24%) UGS=14 (37%) UGS=3 (8%) UGS=0 (0%) UGS=2 (5%)

PGS=3 (43%) PGS=4 (57%) PGS=0 (0%) PGS=0 (0%) PGS=0 (0%) PGS=0 (0%)

EasySOC abstracts
from Web Service
technologies

UGS=1 (3%) UGS=14 (37%) UGS=6 (16%) UGS=1 (3%) UGS=0 (0%) UGS=0 (0%)

PGS=5 (71%) PGS=2 (28%) PGS=0 (0%) PGS=0 (0%) PGS=0 (0%) PGS=0 (0%)

EasySOC simplifies
service discovery

UGS=27 (71%) UGS=9 (24%) UGS=1 (3%) UGS=1 (3%) UGS=0 (0%) UGS=0 (0%)

PGS=5 (71%) PGS=2 (28%) PGS=0 (0%) PGS=0 (0%) PGS=0 (0%) PGS=0 (0%)

EasySOC helps in
changing service
providers

UGS=18 (47%) UGS=11 (29%) UGS=8 (21%) UGS=1 (3%) UGS=0 (0%) UGS=0 (0%)

PGS=6 (86%) PGS=1 (14%) PGS=0 (0%) PGS=0 (0%) PGS=0 (0%) PGS=0 (0%)

Table 1. Results based on 38 undergraduate students (UGS) and 7 postgraduate students (PGS).

mechanisms to dramatically narrow down the result list whenlooking for required
services [15]. Furthermore, one student disagreed with always using EasySOC because
he/she through that our discovery mechanism would not be effective when dealing
with poorly described WSDL documents (the same student consistently disagree with
not employing any other invocation library in those cases when many services are
available). This is certainly a correct observation, on which we have been in fact
working on by identifying common anti-patterns in WSDL descriptions that harms our
service discovery engine and providing guidelines to avoidthem [18]. We are therefore
planning to incorporate these ideas into EasySOC tool-box in the near future.

Moreover, 4 out of the 7 students disagreed with different confidence levels to using
the Web Service libraries employed in the first phase of the assignment because such
libraries demanded them to significantly rewrite the application upon changing service
providers. In other words, they thought that having an adaptation layer for isolating
code from service interfaces is beneficial and better supports the maintainability and
evolution of developed client-side software. As a complement, the other 3 students said
that they would rely on the first approach to service consumption as long as the set
of services to be consumed are known in advance, i.e. services are given as input to
the development process. However, these 3 students consistently responded that they
would switch to EasySOC in cases when target services are notdetermined beforehand,
as some support for service discovery would then be stronglynecessary.

On the other hand, for the second group of items, all postgraduate students
either totally agreed or agreed to the associated query items. Most of them said that
EasySOC provides intuitive support to the triad find-consume-publish of the Web

Service model, even when they did not exercised the last activity in the homework but
nevertheless acknowledged that the tool-box has support for it. Certainly, materializing
such model directly in the development tool allows users to focus on performing
the activities that correspond to their roles, i.e. serviceconsumer or service provider.
Moreover, students considered that EasySOC allowed them tobe unaware of the
technological details for finding or consuming services. Concretely, half of the students
conceived providing code for inspecting service registries and processing WSDL Web
Service descriptions as being two of the most time-consuming and tedious tasks when
building their SOC applications. One student pointed out, however, that even when
abstraction from technological details is important, so isto have background on low-
level technologies for those cases in which specific adjustments must be made to an
application (e.g. changing the communication protocol to talk to outsourced services).
In this sense, EasySOC automatically generates the necessary technology-dependent
software artifacts for calling external Web Services, while allows users to modify these
artifacts as needed.

The seven postgraduate students found the service discovery module of EasySOC
“very helpful to quickly find required candidate services”,which essentially means that
looking for Web Services implementing the functionality a client application expects
is effective and efficient and hence has a positive impact on application building in
terms of development time. Furthermore, 4 out of the 7 students found that good
code documentation in their client-side software artifacts was a prerequisite for the
discovery process of EasySOC to be effective. Indeed, the effectiveness in finding
required services heavily depends on to what extent users employ explanatory names
and proper documentation for both class names and method parameters. However, note
that this does not represent a strong assumption from our tool as these are desirable and
frequent [19] development practices for any kind of software. Finally, all of the students
said that EasySOC helped them with the requirement of changing service providers.

5.2 Undergraduate students: Survey analysis

Table 1 shows that, for the case of undergraduate students, the opinions with respect to
items 1 and 2, and to a lesser extent for the items 3-6, were less concentrated as opposed
to the results of the previous subsection. In this sense, to better analyze the responses,
we quantified and categorized whether each individual student was more convinced of
using an approach above the other. For example, if a studentagreedto “I would always
develop any SOC application as in the first phase” andsomewhat agreedto “I would
always develop any SOC application as in the second phase”, it meant that the student
preferred the contract-first approach. Figure 3 illustrates the obtained results. It is worth
pointing out that, except for the case of the “Undecided” group, the rest of the students
either somewhat agreed, agreedor totally agreedto one of these two items, which
established a minimum acceptable level of confidence regarding tool preference.

Remarkably, 55.27% of the surveyed students said that they preferred using
EasySOC over relying on tools based on contract-first. The common argument behind
this preference was that the basic elements of the EasySOC programming model
facilitates the “agile” development of “modifiable” SOC applications. Regarding the
functionality offered by our tool-box, the students also emphasized on the usefulness of

Contract-first
(13.16%)

EasySO
(55.27%)

C

Undecided
(31.57%)

Fig. 3. Undergraduate students: Approach preference.

its discovery mechanisms, and the convenience of its automatic source code generation
techniques, for example for building service adapters.

Furthermore, 5 out of the 38 students (13.16%) said that theywere more
comfortable with contract-first since it required less software for calling services
compared to EasySOC (just a service invocation framework),and “one could also
achieve an acceptable level of decoupling between applications and service contracts
by addressing this non-functional requirement early in thedesign stage of the
application”. Precisely, EasySOC comes with a software support that prescribes a
simple programming model based on pervasive patterns, which leads to a natural way
of building SOC applications with high levels of decoupling. Application design is thus
more focused on specifying the functionality of the internal application components
and the external services, while decoupling is addressed implicitly when materializing
these components via our tool-box.

Not surprisingly, 31.57% of the undergraduate students were not decided about
which approach they would use to develop SOC applications inthe future. Moreover,
half of them (i.e. 6 students) simultaneouslysomewhat agreedto using both tools
because “choosing a development tool depends on several factors”, including the size
of the client-side software, the number of services to be consumed, and the amount
of dependencies between internal application components and such services, or even
management-level directions. However, the same students pointed out that they found
EasySOC useful to simplify service discovery, and to keep the client source code away
from “service-specific instructions”, or in other words contract-related code.

On the other hand, the other half of the students gave origin to two corner
cases. Three students agreed to employing either approaches since they had trouble
learning Eclipse but they would definitively exploit the design principles materialized
by EasySOC for building their applications. As stated before, these principles
are technology-agnostic, and we are in fact working on providing alternative
materializations of EasySOC for supporting other popular DI containers and IDEs
to further ease its adoption. Lastly, two students and one student simultaneously
disagreeandcompletely disagree, respectively, on using either models for developing
applications. After carefully looking at their opinions, the reason of the low level
of agreements was that of the above 6 students, i.e. they werenot sure about which
approach would be the best option in most scenarios. One of the three students
additionally pointed out that in larger projects the adapter layer injected by EasySOC
might negatively affect the performance of applications compared to those not relying

on adapters. After finishing collecting the students’ opinions, we conducted an
empirical study that showed that supporting adapters in practice has an acceptable
overhead in terms of CPU and memory consumption [6].

5.3 Students’ acceptance analysis

Finally, the well-known Likert scale [17], the most widely used psychometric scale
in survey research, was assessed. Roughly, the Likert scaleis the sum of answers on
several Likert items, i.e. individual statements to which respondents can associate a
level of agreement. After the survey is completed, the agreement levels of each Likert
item are typically summed to create an overall score per participant.

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N
um

be
r

of
 r

es
po

nd
an

ts
 w

ho
 a

ch
ie

ve
d

th
e

sa
m

e
sc

or
e

Likert scale

Histogram of frequencies
Bézier curve

Fig. 4. Likert scale: Results data distribution.

Since we were interested in quantifying the overall perception of the students on
EasySOC, we associated a numerical score with query item 1 ranging from 0 (totally
agree) to 5 (totally disagree), but ranging from 5 (totally agree) to 0 (totally disagree) for
query items 2-6. As a consequence, our designed Likert scalewas in the range of [0,30],
with 0 being strongly disagree with EasySOC and with 30 beingstrongly agree with it.
We calculated the Likert score per student. Figure 4 depictsthe results frequency and a
smooth curve. Frequency was calculated as the number of students who had the same
score. Interestingly, only one participant got the lowest score that was 15, i.e. the worst
perception was “neutral”. After smoothing the results using Bézier curves, they tended
to a normal distribution with an averageµ = 22.67 and a standard deviationσ = 2.65,
meaning that 95.4% of the students scored between [µ − 2 ∗ σ, µ + 2 ∗ σ]. In other
words, 42 students scored in the range of [17.36, 27.97], which manifests a very good
perception of EasySOC.

6 Conclusions and future work

Service-Oriented Computing is a relatively new paradigm for the development of
distributed systems that promotes the seamless reuse of existing pieces of functionality
exposed by third-parties. The paradigm is far from being a buzzword and is being
actively exploited in the software industry by means of specialized frameworks for both
exposing and consuming services. Particularly, broadly used tools in the latter category
are based on a contract-first approach to service consumption, which commonly leads
to applications that are tied to particular service contracts and therefore compromises
maintainability. Moreover, these tools pay little if no attention to other two essential
aspects of SOC development, namely service discovery and replacement.

A different approach for developing SOC applications is code-first, which focuses
on achieving a stronger separation between application code and service contracts.
Sadly, tools in this line are based on techniques that are difficult to use for average
users. To address this, we have proposed EasySOC, a development model that
materializes code-first concepts and enforces the usage of pervasive object-oriented
design patterns as a way of structuring SOC applications. Inrecent works, we have
empirically shown that EasySOC helps in easing service discovery [5], improves source
code maintainability and service replacement [1], and doesnot incur in performance
overheads at run-time [6]. The evaluation presented in thispaper offers complementary
evidence about software practitioners’ acceptance of the proposed approach.

We worked on the hypothesis that EasySOC sharpens the learning curve needed
to build loosely coupled SOC applications provided developers have some required
basic concepts, namely design patterns and the code-first method. We performed a
controlled experiment and surveyed 45 last-grade and postgraduate students to collect
their opinions. Results suggest that the students perceived EasySOC as a convenient
and intuitive tool for implementing applications. Since the students had very good
programming skills but not much knowledge on SOC before the experiment, which
is in fact the initial state of real development teams planning to implement the SOC
paradigm, we can reasonably extrapolate these results to support the argument that
EasySOC may be useful in similar real-world situations. In the near future, we will
conduct experiments with other students and real development teams to further validate
our claims.

Acknowledgements

We deeply thank the students who participated in the survey for their good
predisposition in the experiment. We also acknowledge the financial support provided
by ANPCyT through grants PAE-PICT 2007-02311 and PAE-PICT 2007-02312.

References

1. Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo Campo. Easysoc: Making
Web Service outsourcing easier.Information Sciences, in press, acccepted 2010.

2. John Erickson and Keng Siau. Web Service, Service-Oriented Computing, and Service-
Oriented Architecture: Separating hype from reality.Journal of Database Management,
19(3):42–54, 2008.

3. Mike P. Papazoglou and Willem-Jan van den Heuvel. Service-oriented design and
development methodology.International Journal of Web Engineering and Technology,
2(4):412–442, 2006.

4. Thomas Erl.SOA Principles of Service design. Prentice Hall, 2007.
5. Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo Campo. Empirically

assessing the impact of dependency injection on the development of Web Service
applications.Journal of Web Engineering, 9(1):66–94, 2010.

6. Cristian Mateos, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Separation of
concerns in service-oriented applications based on pervasive design patterns. InSAC-WT’10,
pages 2509–2513. ACM, 2010.

7. Luca Cavallaro and Elisabetta Di Nitto. An approach to adapt service requests to actual
service interfaces. InSEAMS’08, pages 129–136. ACM, 2008.

8. Matthew J. Duftler, Nirmal K. Mukhi, Aleksander Slominski, and Sanjiva Weerawarana.
Web Services Invocation Framework (WSIF). InOOPSLA’01. ACM, 2001.

9. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, USA, 1995.

10. Hong Yul Yang, E. Tempero, and H. Melton. An empirical study into use of dependency
injection in Java. InASWEC ’08, pages 239–247. IEEE Computer Society, March 2008.

11. Marisol Pérez Reséndiz and José Oscar Olmedo Aguirre. Dynamic invocation of Web
Services by using AOP. InICEEE’05, pages 48–51. IEEE Computer Society, 2005.

12. María Agustina Cibrán, Bart Verheecke, Wim Vanderperren, Davy Suvée, and Viviane
Jonckers. Aspect-oriented programming for dynamic Web Service selection, integration and
management.World Wide Web, 10(3):211–242, 2007.

13. Hamid Motahari Nezhad, Boualem Benatallah, Axel Martens, Francisco Curbera, and Fabio
Casati. Semi-automated adaptation of service interactions. In WWW’07, pages 993–1002.
ACM, 2007.

14. Shinichi Nagano, Tetsuo Hasegawa, Akihiko Ohsuga, and Shinichi Honiden. Dynamic
invocation model of Web Services using subsumption relations. In ICWS’04, pages 150–
157. IEEE Computer Society, 2004.

15. Marco Crasso, Alejandro Zunino, and Marcelo Campo. Combining Query-By-Example and
query expansion for simplifying Web Service discovery.Information Systems Frontiers, in
press, accepted 2009.

16. Eleni Stroulia and Yiqiao Wang. Structural and semanticmatching for assessing Web Service
similarity. International Journal of Cooperative Information Systems, 14(4):407–438, 2005.

17. Rensis Likert. A technique for the measurement of attitudes. Archives of Psychology,
22(140), 1932.

18. Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino,and Marcelo Campo. Improving
Web Service descriptions for effective service discovery.Science of Computer Programming,
in press, accepted 2010.

19. Diomidis Spinellis. The way we program.IEEE Software, 25(4):89–91, 2008.

