
This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

Adding Semantic Web Services Matching and
Discovery Support to the MoviLog Platform

Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

ISISTAN Research Institute - Also CONICET
Facultad de Cs. Exactas, Departamento de Computaciï¿1

2 y Sistemas, UNICEN
Campus Universitario - Paraje Arroyo Seco - (B7001BBO) - Bs. As., Argentina
email: azunino@exa.unicen.edu.ar

Summary. Semantic Web services are self describing programs that can be searched, under-
stood and used by other programs. Despite the advantages Semantic Web services provide,
specially for building agent based systems, there is a need for mechanisms to enable agents to
discover Semantic Web services. This paper describes an extension of the MoviLog agent plat-
form for searching Web services taking into account their semantic descriptions. Preliminary
experiments showing encouraging results are also reported.

1 Introduction

Once a big repository of Web pages, images and others forms of static data, the Web
is evolving into a worldwide network ofWeb Services, paving the way to the so-
called Semantic Web [1]. A Web Service [2] is a distributed piece of functionality
that can be published, located and accessed through standard Web protocols. The
goal of Web services is to achieve automatic interoperability between Web applica-
tions by providing them with an infrastructure to use Web-accessible resources.

Several researchers agree that mobile agents will have a fundamental role to ma-
terialize this vision [3, 4]. A mobile agent is a computer program which is able to
migrate between network sites to perform tasks and interact with resources. Mobile
agents have good properties that make them suitable for exploiting the potential of
the Web [5]: support for disconnected operations, robustness and scalability.

Despite the advantages mobile agents offer, many challenges remain to glue them
with Web services. Most of these challenges are a result of the nature of the Web.
From its beginnings the Web has been mainly designed for human use and interpre-
tation. Hence, mobile agents cannot autonomously take advantage of Web resources,
thus forcing developers to write hand-coded solutions that are difficult to extend,
reuse and maintain. Besides, the inherent complexity of mobile code programming
with respect to traditional non-mobile systems, has dwindled the massive adoption
of mobile agent technology, limiting its usage to small applications and prototypes.

In this sense, we believe there is a need for a mobile agent development infras-
tructure that addresses these problems and, at the same time, preserve the key benefits

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

2 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

of mobile agents for building distributed applications. To this end, we have developed
MoviLog [6], a platform for building Prolog-based mobile agents on the WWW.
MoviLog encourages the usage of mobile agents by supporting a novel mechanism
for handling mobility named RMF (Reactive Mobility by Failure). It allows program-
mers to easily build mobile agents on the Semantic Web without worrying about Web
services location or access details. Furthermore, to take into account the semantics
of services, we have extended MoviLog with support for semantic matching and
discovery of Web services. The extension, called Apollo, enables an automatic inter-
operation between mobile agents and Web services with little development effort.

This paper is organized as follows. The next section introduces semantic Web
services. Sect. 3 presents the MoviLog platform. Sect. 4 describes Apollo. Sect. 5
explains an example. Sect. 6 reports experimental results. Sect. 7 discusses the most
relevant related work. Finally, Sect. 8 draws conclusions.

2 Semantic Web Services

Web services are a suitable model to allow systematic interactions of programs across
the WWW. To hide the diversity of resources hosted by WWW, Web services tech-
nologies mostly rely on XML, a structured language that extends and formalizes
HTML. In this sense, the W3C Consortium has developed SOAP1, a communica-
tion protocol based on XML. In addition, languages for describing Web services have
been developed. An example is WSDL2, an XML-based language for describing ser-
vices as a set of operations over SOAP messages. From a WSDL specification, a
program can find out the specific services a Web site provides, and how to use and
invoke these services.

UDDI 3 defines mechanisms for searching and

Fig. 1.Web services architecture

publishing Web services. By means of UDDI, Web
service providers register information about the ser-
vices they offer, thus making it available to potential

clients. The information managed by UDDI ranges from WSDL files describing ser-
vices to data for contacting providers.

Fig. 1 shows the conceptual architecture of Web services. A Web service is de-
fined by a WSDL document describing a set of operations. A provider creates WS-
DLs for its services and publish them in an UDDI registry. A requester can browse
registries to find services matching his needs. Then, the requesters can bind to the
provider by invoking any of the operations defined by the WSDLs.

The weakest point of the architecture shown above is that it does not consider
the semantics of services. To achieve an automatic interaction between agents and
Web services, each service must be described in a nonambiguous and computer-
understandable way. In this sense, some languages for Web services metadata anno-

1 SOAP (Simple Object Access Protocol): http://www.w3.org/TR/soap/
2 WSDL (Web Service Description Language): http://www.w3.org/TR/wsdl
3 UDDI (Universal Description, Discovery and Integration): http://www.uddi.org

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

Title Suppressed Due to Excessive Length 3

tation have emerged, such as RDF4 and OWL [7], whose goal is to provide a formal
model for describing the concepts involved in services. In this way, agents canunder-
standand reason about the functionality a Web service performs, thus enabling the
automatization of Web applications. Finally, a step towards the creation of a standard
ontology of services is OWL-S [8]. The next section introduces MoviLog.

3 MoviLog

MoviLog [6] is a platform for programming mobile agents. The execution units of
MoviLog are Prolog-based mobile agents namedBrainlets. MoviLog uses strong
mobility, where Brainlets execution state is transferred transparently on migration.
Besides providing basic mobility primitives, the most interesting aspect of MoviLog
is the notion of Reactive Mobility by Failure (RMF), a novel mobility model that
reduces the effort for developing mobile agents by automating decisions such as
when or where to migrate upon afailure. A failure is defined as the impossibility of
an executing agent to obtain some required resource at the current site.

Roughly, each Brainlet possess Prolog code that is organized in two sections:
predicatesandprotocols. The first section defines the agent behavior and data. The
second section declares rules that are used by RMF for managing mobility. RMF
states that when a predicate declared in the protocols section of an agent fails,
MoviLog moves the Brainlet along with its execution state to another site that con-
tains definitions for the predicate. Indeed, not all failures trigger mobility, but only
failures caused by predicates declared in the protocols section. The idea is that nor-
mal predicates are evaluated with the regular Prolog semantics, but predicates for
which a protocol exists are treated by RMF so that their failure may cause migration.
The next example presents a simple Brainlet whose goal is to solve an SQL query
given by the user on a certain database:

PROTOCOLS
pro toco l (dataBase , [name (X) , user (U) , passwd (P)]) .

CLAUSES
doQuery (DBName, Query , Res):−

dataBase ([name (DBName) , user (’ d e f a u l t ’) , passwd (’ ’)] , Conn) ,
doQuery (Conn , Query , Res) , c loseConnect ion (Conn) .

?−sqlQuery (DBName, Query , Res) :− doQuery (DBName, Query , Res) .

PROTOCOLS section declares a protocol stating that the evaluation ofdata-
base(...)predicate must be handled by RMF. In other words, the RMF mechanism
will act whenever an attempt of connecting to the given database with the sup-
plied username and password fails at the current site. As a result, RMF will trans-
fer the agent to a site containing a database namedDBName. After connecting to
the database, the Brainlet will execute the query, and then return to its origin. Note
that the protocol does not specify any particular value of the properties of the re-
quested connection, which means that all unsuccessful attempts to access locallyany
database withanyusername-password combination will trigger reactive mobility.

4 RDF (Resource Description Framework): http://www.w3.org/RDF/

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

4 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

Despite the advantages RMF has shown, it is not adequate for developing Web-
enabled applications because it lacks support for interacting with Web resources. To
overcome this limitation, RMF and its runtime support have been adapted to provide
a tight integration with Web Services [9]. Also, to take advantage of services se-
mantics, an infrastructure for managing and reasoning about Web services metadata
named Apollo has been built. The rest of the paper focuses on Apollo.

4 Semantic Matching in MoviLog

Semantic matching allows agents to take advantage of ontologies by using inference
capabilities. An ontology represents the meaning of terms in vocabularies and the
relationships between these terms [1]. Reasoners are often used to infer knowledge
from ontologies. We have developed a Prolog-based reasoner as a set of rules and
facts for describing and manipulating ontologies. In addition, the reasoner includes
matchmaking rules to determine semantic similarity between any pair of concepts.

4.1 Representing ontologies in Prolog

We have developed a reasoner on top of the OWL-Lite language [7]. Unfortunately,
OWL-Lite only supports classification hierarchy and simple constraints, thus offer-
ing less expressiveness than other languages belonging to the OWL family. However,
OWL-Lite ensures inference completeness and decidability.

Table 1.OWL to Prolog correspondence

OWL-Lite Prolog Description
Class class(X) X is a class.
rdfs:subClassOf subClassOf(X,Y) X is a subclass of class Y.
rdf:Property property(X) X is a property.
rdfs:subPropertyOf subPropertyOf(X,Y) X is a subproperty of property Y.
Individual individualOf(X,Y). X is an instance of class Y.
inverseOf inverseOf(X,Y) X is inverse to property Y.
equivalentProperty equivalentProperty(X,Y) X is equivalent to property Y.
equivalentClass equivalentClass(X,Y) X is equivalent to class Y.
Properties triple(X,Y,Z). X is related to Z by property Y.

Interestingly, OWL-Lite can be translated to first order logic [10]. Table 1 shows
the Prolog counterpart for some of the OWL-Lite sentences supported by our rea-
soner. OWL-Lite classes and properties are represented as simple facts; relation-
ships are expressed as RDF triples. An RDF triple is a structure with the form
triple(subject, property, object)which indicates thatsubjectis related byproperty
to objectvalue. OWL-Lite features such as cardinality, range and domain constraints

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

Title Suppressed Due to Excessive Length 5

over properties are represented as triples. For example,triple(author, range, person)
states that propertyauthormust be an instance of the classperson.In addition, equal-
ity, inequality and transitive sentences of OWL-Lite may indirectly relate a concept
to another. Our reasoner defines the following set of rules for dealing with these
relationships:

t r i p l e (X,E,Y) :− equ iva len tProper t y (P,E) , t r i p l e (X,P,Y) .
t r i p l e (Y,O,X) :− inverseOf (P,O) , t r i p l e (X, P,Y) .
t r i p l e (X, T , Z) :− t r a n s i t i v e (T) , t r i p l e (X, T ,Y) , t r i p l e (Y, T , Z) .

The first rule states that X is related to Y by property E, if E is equivalent to
P and X is related to Y by P. For example, ifauthor and writer were equivalent
properties, thentriple(article, writer, person)holds. The second rule states that Y
is related to X by property O wheneverinverseOf(P,O)is true and X is related to
Y by P. For example, ifhasPublicationand author were inverse properties, then
triple(person, hasPublication, article)holds. The last rule handles transitive rela-
tionships between concepts: ifJohnis Paul’s advisor, andPaul is George’s advisor,
thenJohnis George’s advisor.

Fig. 2 shows an ontology
Fig. 2.An ontology for generic documentsfor documents. It defines that

a thesisand anarticle aredocuments, both having one or more authors. Athesishas
anadvisor. Both author andadvisorare properties with rangeperson. A document
has a title, a language and somesections. Finally, a section has a content. In the rules
two new concepts appear:Thingandowl:string. Thing is the parent class of all OWL
classes. Also, OWL includes some built-in datatypes.

4.2 Matching concepts

Ontologies can be used to describe data and services in a machine-understandable
way. Automated data migration systems use ontologies to semantically describe their
data structures. A process may then migrate a record from a source database to a
sufficiently similar record in a target database. In automated Web services discovery
systems, agents usually try to locate a sufficiently similar service to accomplish their
current goal. Indeed, the problem to define what “sufficiently similar” means.

The degree of match between two concepts depends on their distance in ataxon-
omy tree. A taxonomy may refer to either a hierarchical classification of things or the
principles underlying the classification. Almost anything can be classified according
to some taxonomic scheme. Mathematically, a taxonomy is a tree-like structure that
categorizes a given set of objects. We have defined four degrees of matching accord-
ing to [11]. The rational to compute the similarity between two concepts X and Y
is:

• exact if X and Y are individuals belonging to the same or equivalent classes, we
label similarity asexact.

• subsumesif X is a subclass of Y we label similarity assubsumes.
• plug-in if Y is a subclass of X we label similarity asplug-in.
• fail occurs when none of the previous labels could be stated.

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

6 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

We have enhanced this scheme by considering the distance between any pair of
concepts in a taxonomy tree (see Fig. 3). From the diagram, it can be clearly stated
thatc2 is more similar tob1 thana1: their similarity has been labeled asplug-in, but
c2 is hierarchically closer tob1 thana1.

The matchmaking algorithm
Fig. 3.Enhanced degree of match consists of a set of Prolog rules

for calculating the distance between concepts within a taxonomy. The rulematch(c0,
c1, label, dist)returns the distance betweenc0 andc1 underlabel. For example, the
rule for equivalent classes is:

match (X, Y, exact ,0) : − equ iva len tC lass (X,Y) .

The distance between two concepts is defined recursively as:

isSubClassOf (X,Y,1) : − subClassOf (X,Y) .
isSubClassOf (X,Y,N):− subClassOf (X, Z) , isSubClassOf (Z ,Y, T) , N i s T+1.

Applying the previous rules with X=article produces:isSubClassOf(article,docu-
ment,1)andisSubClassOf(article,thing,2). Matching rules for subsumes and plug-in
labels useisSubClassOf(X,Y,Z)to compute distance as shown below:

match (X, Y, subsumes ,N):− isSubClassOf (X,Y,N) .
match (X, Y, p lug in ,N) :− isSubClassOf (Y,X,N) .

For space reasons, matchmaking support for properties is omitted. Nevertheless,
the scheme previously discussed applies when computing distance between proper-
ties.

4.3 Semantic Web Services Discovery

In order to perform a seman-
Fig. 4.The Apollo Systemtic search of a Web service in-

stead of a less effective keyword based search, an agent needs computer processable
descriptions of services. Ontologies can be used for representing such descriptions.
In this sense, OWL-S [8] aims at creating a standard service ontology. OWL-S con-
sist of a set of predefined classes and properties for representing services. However,
OWL-S is intended to describe services and how they must be invoked, but not how
to semantically locate them. We combined OWL-S descriptions with UDDI registries
to build a semantic Web services discovery system called Apollo. Fig. 4 shows its
architecture.

Apollo allows a Web service publisher to annotate services by using concepts
from a shared OWL-S ontology database. Apollo is based on an OWL-S subset
named Service Profile, which offers support for semantic description of services
functionality, arguments, preconditions and effects. In this way, a publisher can de-
scribe services and its parameters in terms of concepts from the shared database.
WSDL documents are stored in UDDI nodes by using UDDI4J5. Finally, each
WSDL document and its concepts are associated through theSemantic Descriptions
Database.

5 UDDI for JAVA: http://www-124.ibm.com/developerworks/oss/uddi4j/

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

Title Suppressed Due to Excessive Length 7

A search request contains a concept describing the desired service functionality,
and two sets of concepts for in/out parameters. To perform a more effective search,
service requests are forwarded both to UDDI registries and to the Semantic Search
Engine. Data resulting from an UDDI search are transformed to concepts from the
Ontology Databaseby a component that extends the UDDI Inquiry API.

The main component of theSemantic Search Engineis the semantic reasoner.
It uses a matchmaking scheme and a simple algorithm for sorting the results of a
service search according to the degree of match. The algorithm first tries to contact
a Web service that semantically matches the requested conceptual output. If there
are more than one Web service with the same degree of match for their output, the
algorithm examines inputs to check that the requester is able to invoke the service.
The pseudo code for the Web service rating algorithm is:

exact = 2 ; subsumes = 1 ; p lug_ in = 0 ;
MatchResult compare (MatchResult mr0 , MatchResult mr1) {

i f (mr0 . output . l abe l > mr1 . output . l abe l) return mr0 ;
else i f (mr0 . output . l abe l < mr1 . output . l abe l) return mr1 ;
else { i f (mr0 . output . d is tance < mr1 . output . d is tance) return mr0 ;

else i f (mr0 . output . d is tance > mr1 . output . d is tance) return mr1 ;
}
/∗ Outputs match . . . Now compare in p u t parameters . ∗ /

}

5 A sample scenario

Suppose we are deploying a network composed of sites that accepts Brainlets for
execution. Some of these sites offers Web services for translating different types of
documents (articles, forms, theses, etc.) to a target language. Every time a client
wishes to translate a document, an agent is asked to find the service that best adapts
to the kind of document being processed. In order to add semantics features to the
model, all sites publish and search for Web services by using Apollo, and services
are annotated with concepts from the ontology presented in Sect. 4.1 (see Fig. 2).

We assume the existence of
Fig. 5.A Brainlet for thesis translationdifferent instances of Web ser-

vices for handling the translation of a specific type of document. For example, trans-
lating a plain document may differ from translating a thesis, because a smarter trans-
lation can be done in this latter case: a service can take advantage of a thesis’ key-
words to perform a context-aware translation. Nevertheless, note that a thesis could
be also translated by a Web service which expects a Document concept as an input
argument, since Thesis concept specializes Document according to our ontology.

When a Brainlet gets a new document for translation, it prepares a semantic
query. In this case, the agent needs to translate a thesis to English. Fig. 5 shows the
activities performed by each actor involved in the translation process. Before send-
ing the service query, the Brainlet sets the service desired output as a Thesis. Also,
the Brainlet sets the target language as english and the source document kind as
Thesis, and then the semantic search process begins. Apollo uses semantic matching
capabilities to find all existing Translation services. Let us suppose two services are
obtained: a service for translating theses (s1) and a second service (s2) for translating
any document.

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

8 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

After finding a proper list of translation Web services, Apollo sorts them ac-
cording to the degree of match computed between the semantic query and services
descriptions, and returns this new list back to the client. In the example, the degree
of match fors1 is greater than fors2, becauses1outputs a Thesis (exact) while s2
was labeled assubsumeswith distance one.

PROTOCOLS
pro toco l (webService , [name (t r a n s l a t e) , i n p u t ([thes is , eng l i sh]) , ou tput (t h e s i s)]) .

CLAUSES
% The Prolog s t r u c t u r e represen t ing some t h e s i s
t h e s i s ([t i t l e (’A t i t l e ’) , author (’An author ’) , language (spanish) ,

adv isor (’An adv isor ’) , sec t ions ([. . .]) }) .
?− t r a n s l a t e (TargetLang , Res):−

webService ([name (t r a n s l a t e) , i n p u t ([thes is , TargetLang]) ,
ou tput (t h e s i s)] , WSProxy) , t h e s i s (Th) , executeService (WSProxy ,
[Th , TargetLang] , Res) .

The previous code shows the implementation of the Brainlet discussed so far.
As explained before, when thewebService(...)predicate is executed, RMF contacts
Apollo to find candidate services that semantically match the Brainlet’s request. The
evaluation of the predicate returns a proxy to the resulting service, which is used
to effectively access it. The way the service is actually contacted (i.e. migrate to
the service location or remotely invoke it) depends on access policies based on cur-
rent execution conditions (network load, agent size, etc.) managed by the underlying
platform.

6 Experimental results

In this section we report some experimental results. Particularly, we evaluated the
performance of Apollo with regard to the number of published Web services. We
generated a Semantic Web services database in an automatic fashion and we pub-
lished it into Apollo. Both Apollo and all test applications were deployed on a Pen-
tium 4 2.26 GHz with 512 MB of RAM, running Java 1.4.2 on Linux.

The Semantic Web services database was created using two ontologies: a stock
management domain and a car selling domain. Each service description was com-
posed of five properties: input, output, category, preconditions and effects. For ex-
ample, a Web service that provides a quote for a given sport car. Therefore, its input
would be instantiated as acs:sportcarconcept, its output as acs:quoteconcept, and
finally its functionality as acs:car quotingconcept. Furthermore, another Web ser-
vice can do the same for a “Sedan” car. In this case, since bothcs:sportcar and
cs:sedanare cs:vehicles, service input would be instantiated ascs:sedan. Finally,
searches have been simulated by using randomly generated conditions and expected
results.

The resulting average response time for 600 random searches were: 2.37 ms
(100 services), 12.65 ms (1000 services) and 149.33 ms. (10000 services). From this
we can conclude that Apollo performance is good. Note that the overall response
time is less than 200 ms for 10000 Web services descriptions.

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

Title Suppressed Due to Excessive Length 9

Fig. 6 shows the relationship between database size and the time for processing
200 different searches. It can be seen that the worst response time is less than 600 ms.
That the peaks of the curves are caused by the JAVA garbage collector.

7 Related work

Some related approaches are
Fig. 6.# of searches vs. response time[12, 13, 14]. Most of them de-

scribe services by means of ontologies and a discrete scale of semantic similarity
based on [11]. One limitation of these approaches is that their matching scheme do
not consider the distance between concepts within a taxonomy tree. Hence, similar-
ity related to different specializations of the same concept are wrongfully computed
as being equal.

The OWL-S Matchmaker [8] is a semantic Web service discovery and publication
system. It includes a semantic matching algorithm based on service functionality and
data transformation descriptions written in OWL-S. Data transformation descriptions
are made in terms of service input and output arguments. Moreover, service search
requests are enriched with concepts for describing the list of services that match a
required data transformation. The OWL-S Matchmaker does not support taxonomic
distance between concepts either.

In [15], a Web service is described by an OWL-S Service Profile instance or an
extension of an existing profile. Semantic similarity between two services is com-
puted by comparing their profiles’ metadata instead of input/output concepts. A ser-
vice request must contain the class associated to theideal service profile (i.e. the
one preferred by the requester), which is matched against published profiles. The
drawback of this approach is its lack of support for finding available service profiles
extensions.

Some interesting advances towards the integration of agents and Web services
are ConGolog [16] and IG-JADE-PKSLib [17]. However, these approaches present
the following problems: bad performance/scalability (IG-JADE-PKSLib), no/limited
mobility (IG-JADE-PKSLib, ConGolog). In addition, none of the previous platforms
provide support for semantic matching and discovery of Web services.

8 Conclusion and future work

This paper introduced Apollo, an infrastructure for semantic matching and discov-
ery of Web services. Unlike previous work, Apollo defines a more precise semantic
matching algorithm, implemented on top of a Prolog reasoner which offers inference
capabilities over OWL-Lite to a semantic Web services search engine. In addition,
the integration of MoviLog with Apollo enables the development of mobile agents
that interact with Web-accessible functionality. This leads to the creation of an envi-
ronment where sites can publish their capabilities as Semantic Web services, so that
agents can use them.

In the context of Apollo, some issues remain to be solved. First, OWL-Lite needs
to be replaced by a more powerful and expressive language, such as OWL DL or

This is a preprint of the article: "C. Mateos, M. Crasso, A. Zunino and M. Campo: "Adding Semantic Web Services Matching and Discovery Support to
the MoviLog Platform". IFIP AI 2006. Vol. 217, pp. 51-60. 2006. Springer. ISBN 0-387-34654-6."
The final version is available at http://dx.doi.org/10.1007/978-0-387-34747-9_6

10 Cristian Mateos Marco Crasso Alejandro Zunino Marcelo Campo

OWL Full. Second, the Ontologies Database content must be enhanced in order to
provide a framework to describe, publish and discover other types of semantically-
annotated Web resources (pages, blogs or agents), and not just Web services. Thereby
an agent would be able to autonomously interact with Web services or Web content.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic Web,”Scientific American,
vol. 284, pp. 34–43, May 2001.

2. S. J. Vaughan-Nichols, “Web services: Beyond the hype,”Computer, vol. 35, Feb. 2002.
3. J. Hendler, “Agents and the semantic web,”IEEE Intelligent Systems, vol. 16, Mar. 2001.
4. M. N. Huhns, “Software agents: The future of Web services,” inAgent Technology Work-

shops 2002, vol. 2592 ofLecture Notes in Artificial Intelligence, pp. 1–18, 2003.
5. D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,”Communications

of the ACM, vol. 42, pp. 88–89, Mar. 1999.
6. A. Zunino, C. Mateos, and M. Campo, “Reactive mobility by failure: When fail means

move,”Information Systems Frontiers, vol. 7, no. 2, pp. 141–154, 2005. ISSN 1387-3326.
7. G. Antoniou and F. van Harmelen, “Web Ontology Language: OWL,” inHandbook on

Ontologies in Information Systems(S. Staab and R. Studer, eds.), Springer-Verlag, 2003.
8. M. Paolucci and K. Sycara, “Autonomous semantic Web services,”IEEE Internet Com-

puting, vol. 7, no. 5, pp. 34–41, 2003.
9. C. Mateos, A. Zunino, and M. Campo, “Integrating intelligent mobile agents with Web

services,”International Journal of Web Services Research, vol. 2, no. 2, pp. 85–103, 2005.
10. J. de Bruijn, A. Polleres, and D. Fensel, “Deliverable D20v0.1 OWL Lite, WSML Work-

ing Draft.” http://www.wsmo.org/2004/d20/v0.1/, June 2004.
11. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara, “Semantic matching of Web services

capabilities,” inFirst International Semantic Web Conference, vol. 2342, Springer, 2002.
12. K. Sivashanmugam, K. Verma, A. P. Sheth, and J. A. Miller, “Adding semantics to Web

services standards,” inIEEE International Conference on Web Services, June 2003.
13. I. Horrocks and P. F. Patel-Schneider, “A proposal for an owl rules language,” inThe 13th

international conference on World Wide Web, pp. 723–731, ACM Press, Jan. 01 2004.
14. L. C. Chiat, L. Huang, and J. Xie, “Matchmaking for semantic Web services,” inIEEE

International Conference on Services Computing (SCC’04), pp. 455–458, IEEE, 2004.
15. L. Li and I. Horrocks, “A software framework for matchmaking based on semantic Web

technology,” International Journal of Electronic Commerce, vol. 8, no. 4, pp. 39–60,
2004.

16. S. A. McIlraith and T. C. Son, “Adapting golog for programming the semantic Web,” in
Fifth Symposium on Logical Formalizations of Commonsense Reasoning), May 20–22
2001.

17. E. Martínez and Y. Lespérance, “IG-JADE-PKSlib: An Agent-Based Framework for Ad-
vanced Web Service Composition and Provisioning,” inWorkshop on Web Services and
Agent-Based Engineering, pp. 2–10, July 19–23 2004.

