
This article is a pre-print of the article "H. Hirsch, A. Rodriguez, J. M. Rodriguez, C. Mateos and A. Zunino: "A Tool for Building Retrievable Code-first
Web Services". Proceedings of the 2014 ARGENCON. pp. 165-170. 2014."
The published version is available at http://dx.doi.org/10.1109/ARGENCON.2014.6868490A tool for building indexable and searchable

code-first Web Services
Matías Hirsch∗1, Ana Rodriguez∗2, Juan Manuel Rodriguez∗3, Cristian Mateos∗4,

Alejandro Zunino∗5 and José Luis Ordiales Coscia†6

∗ISISTAN, UNICEN-CONICETCampus Universitario - Paraje Arroyo Seco, Tandil, Buenos Aires , Argentina
†ThoughtWorksPorto Alegre, Rio Grande do Sul, Brazil

1matias.hirsch@isistan.unicen.edu.ar
2ana.rodriguez@isistan.unicen.edu.ar

3juanmanuel.rodriguez@isistan.unicen.edu.ar
4cristian.mateos@isistan.unicen.edu.ar
5alejandro.zunino@isistan.unicen.edu.ar

6jlordiales@gmail.com

Resumen—Although high quality WSDL documents are
a key factor in a Web Service system success, previous
works have shown that WSDL document quality, in terms
of readability and discoverability, is often disregarded by
service developers. One of the main causes of this is that
developers do not write the WSDL documents directly;
instead these latter are automatically generated from service
implementations, i.e. code-first Web Services. This work
presents a novel tool for assisting Java code-first Web Service
development that spot potential issues that might lead to low
quality WSDL documents. The approach was empirically
evaluated using 81 open-source Web Service implementations.
The evaluation shows that the WSDL documents generated
using our tool are more easily indexed in and searched
from Web Service registries. This indirectly implies that
these WSDL documents have a better quality than the ones
generated using conventional tools.

Resumen—A pesar de que la calidad de los documentos
WSDL, en términos de legibilidad y facilidad de su
descubrimiento, es un factor clave en el éxito de los sistemas
orientados a servicios, trabajos anteriores han mostrado que
la calidad de éstos tiende a ser baja en la práctica. Una posible
causa es que los documentos no son escritos manualmente
sino generados automáticamente a partir del código de los
servicios. En este trabajo se presenta una herramienta para
asistir al desarrollo de Servicios Web desarrollados en Java
mediante la metodología code-first, en donde los documentos
WSDL son derivados de la implementación del servicio.
La herramienta detecta potenciales problemas en código
fuente que pueden afectar la calidad de los documentos
WSDL generados. La herramienta fue evaluada utilizando
81 implementaciones de Servicios Web de código abierto.
La evaluación mostró que los documentos WSDL generados
aplicando las mejoras propuestas por la herramienta son más
fáciles de indexar y buscar en registros de Servicios Web.
Esto sugiere que la calidad de estos documentos WSDL es
mayor respecto de aquellos generados mediante herramientas
convencionales.

I. INTRODUCTION

Web Services is the common technological choice for
implementing remote services [1]. Basically, Web Services
enable service providers to implement their services using
well-known interoperable Web protocols, such as HTTP or
SOAP. In this context, services are offered using sets of

atomic operations that are described using the Web Service
Description Language (WSDL). Hence, service consumers
do not need to know service implementation details because
knowing the WSDL document associated to a service is in
principle enough for determining the functional capabilities
of a service. In addition, WSDL documents are used by
service registries to index the services [2], which can be
instead inspected by consumers usually via keyword-based
search interfaces.

Unfortunately, in practice, most developers disregard
WSDL document quality. This results in WSDL documents
that are difficult to be understood by the service consumers.
Furthermore, service registries effectiveness is negatively
affected by low quality WSDL documents [3]. In addition,
WSDL documents can be a decisive factor in the success of
Web Service based enterprise systems [4]. As a result of this,
a tool for detecting issues in WSDL documents has been
already proposed [5], which is useful in scenarios where
WSDL documents are written manually. This is known as
contract-first.

However, since the most popular approach to build Web
Services in the industry is code-first, the proposed tools
and guidelines for improving WSDL document quality [3],
[5] are inappropriate. This is because under code-first deve-
lopment, WSDL documents are not written by developers,
but instead they are automatically derived from the servi-
ce implementation. Yet, there is evidence that developers
might improve generated WSDL documents quality by first
improving the service implementation quality [6].

This paper presents a novel approach that aims at detec-
ting four coding practices which might lead to bad quality
WSDL documents. This approach was evaluated using a
data-set of 81 code-first Web Service implementations. Be-
sides, we used three WSDL document generation tools to
set the basis for comparison. Two of the tools are the well-
known Axis1 and EasyWSDL2, which are very popular in
the industry, while the third is our tool, called Gapidt, which

1http://axis.apache.org/axis/
2http://easywsdl.ow2.org/

This article is a pre-print of the article "H. Hirsch, A. Rodriguez, J. M. Rodriguez, C. Mateos and A. Zunino: "A Tool for Building Retrievable Code-first
Web Services". Proceedings of the 2014 ARGENCON. pp. 165-170. 2014."
The published version is available at http://dx.doi.org/10.1109/ARGENCON.2014.6868490

was designed to further reduce the above mentioned issues
in generated WSDL documents.

The rest of the paper is organized as follows. Section II
presents further details of the problem and related works.
Section III describes our tool for detecting problems and
refactoring code-first services. Section IV discuses the em-
pirical assessment of the tool. Section V concludes the paper.

II. BACKGROUND

The notion of WSDL quality in this work is based on
the absence of eight anti-patterns presented in [7]. These
anti-patterns are mainly related to the quality of textual/-
structural information present in the WSDL documents, and
particularly data-types and operations definitions. Regarding
textual information, the anti-patterns describe commonly
found bad practices in operation elements and comments.
For instance, param1 is not a good name for an operation
parameter, and operations must have a textual comment
associated. In regard to the WSDL document structure,
the anti-pattern catalog states that data-types should be
as specific as possible, and operations in a service must
have functional cohesion. Finally, the WSDL documents
should neither define redundant data-types nor redundant
operations.

WSDL document quality is essential in the success of
service-oriented systems because WSDL documents are a
key component to effectively consume Web Services. When
the WSDL documents have low quality, the service con-
sumers cannot easily understand how to use the services.
This is true even when the Web Services are intended to be
used in an enterprise intranet, i.e., they are intended to be
used by developers of the same organization. An example of
this is described in [4], in which an enterprise system was
migrated to a service-oriented system. However, in the first
migration attempt developers disregarded WSDL document
quality. This forced a second migration attempt to obtain a
set of services that could be easily re-used. In addition, a
tool was developed to assist this kind of migrations [8].

Since WSDL document quality is a key factor in service
oriented systems, researchers have developed methodologies
that aim at improving WSDL document quality [6], [9],
[5]. In particular, the tool presented in [5] detects potential
issues in WSDL document by means of WSDL document
syntax analysis and natural language processing techniques.
Although this tool is effective, it is ineffective when using
code-first development because it requires manually writing
the WSDL documents. In contrast, Ordiales et al. [6] propo-
se a methodology for code-first service development, which
shows that there is a statistical correlation between some
traditional Object-Oriented (OO) metrics [10] in the service
implementation and the number of anti-patterns [7] in the
generated WSDL documents. However, the approach is not
able to remove text-related anti-patterns.

Instead of improving the code using traditional OO me-
trics to generate better WSDL documents [6], this work
proposes to detect the issues that are more likely to result
in WSDL anti-patterns in the service soure code . To do so,
we have adapted some of the techniques proposed in [5]
to detect the issues in Java service implementation. For
instance, the proposed tool is able to analyze the comments

in Java code and contrast them to the method signature to
ensure that they are cohesive, e.g., a method comment that
only contains the class author information is not useful to
service consumers.

III. APPROACH TO ANTI-PATTERN AVOIDANCE

The goal of our approach is twofold: designing a WSDL
document generation tool that considers as much textual and
structural information as possible and a tool that detects
implementation issues that might lead to low quality WSDL
documents. The generation tool, called Good Api Design
Tools (Gapidt), works very similar to generation tools like
Axis or EasyWSDL, but considers more information than
these tools, e.g., it uses comments in Java methods to
comment service operations.

Gapidt consists in techniques for detecting anti-patterns in
WSDL documents [5] adapted to Java source codes and so-
me complementary new issue detection techniques. The tool
analyzes the classes that define a service operations, e.g., the
classes that would be used to generate the WSDL document
by any conventional generation tool. We call these classes fa-
cade classes. Basically, Gapidt detects the following issues:
Inappropriate or lacking comments, Ambiguous names, Low
cohesive operations, Generic return or parameter types and
Piggybacking errors in return types. Solving these issues
target the anti-patterns described in Table I. Notice that there
is a one-to-one relationship between anti-patterns and issues.
This tool has been implemented as an Eclipse plug-in3.

Cuadro I
TARGETED WSDL ANTI-PATTERNS

Anti-pattern Issue

Inappropriate or lacking
comments

Occurs when: a WSDL document has no
comments, or comments are inappropriate

and non explanatory.

Ambiguous names
Occurs when ambiguous or meaningless
names are used for denoting the main

elements of a WSDL document.

Low cohesive operations
Occurs when port-types have weak

semantic cohesion. A port-type is a set of
operations in a service.

Generic return or parameter
types

Occurs when a special data-type is used
for representing any object of the problem

domain.

Piggybacking errors in return
types

Occurs when operation returns are used to
notify service errors.

To solve Inappropriate or lacking comments, the tool
firstly verifies that all methods in the facade class have
comments, and when some method lacks comments a pro-
blem is reported to the developer. Then, the tool analyses
the existing comments and compares them with the method
name and method parameter names using a similar algorithm
to the one presented in [5]. To perform this analysis, the
tool generates two hypernym trees, one for verbs and one
for nouns for the method comment, and two others for the
method name and method parameter names. Finally, the tool
determines the similarity between the comment verb trees
and method verb trees as well as the similarity between

3Gapidt: https://sites.google.com/site/easysoc/home/code-first-assistant

This article is a pre-print of the article "H. Hirsch, A. Rodriguez, J. M. Rodriguez, C. Mateos and A. Zunino: "A Tool for Building Retrievable Code-first
Web Services". Proceedings of the 2014 ARGENCON. pp. 165-170. 2014."
The published version is available at http://dx.doi.org/10.1109/ARGENCON.2014.6868490

public class Parking{

 public void parkCar(Car c, Location l){…}

 public Location locateCar(String license){…}

 public long elapsedHours(Date a, Date b){…}

}

public class Car{

 String owner;

 String license;

 …

}

public class Location{

 int floor;

 int place;

 …

}

parkCar locateCar elapsedHours

Car Location
String:license

String:owner

Date:a

Date:b

"Car" "Hours"

SERVICE IMPLEMENTATION

Figura 1. Cohesion graph

comment noun trees and method noun trees. If the similarity
is less than 10 %, the tool reports the associated issue. This
threshold has been proved to be the most effective value [5].
The trees are constructed as follows:

1. Tag words in the text using a probabilistic context free
grammar (PCFG) parser [11], then extract two sets:
nouns and verbs.

2. For each set, obtain all the word hypernyms using
WordNet [12], e.g., transforms the words sets in
hypernyms sets, which are organized from the most
generic to the most specific word.

3. For each hypernym set, combine all the elements into
a tree.

a) The tree starts with one ROOT node that is not
associated to any concept.

b) For each hypernym list; for each element in the
list
1) if the element is in the tree do nothing
2) else, add the element as child of its hy-

pernym; if it has no hypernym, add it as child
of the ROOT node.

Then, the similarity between two trees is computed as
follows:

sim(t2, t2) =
depth(sharedSubTree(t1,t2)
max(depth(t2),depth(t2))

For detecting Ambiguous names, the tool applies a three-
step heuristic. First, it verifies whether the names of classes,
attributes and method arguments have an appropriate length,
which should fall between 3 and 30 characters [7]. Then,
the names are contrasted against a known unrepresentative
names list: param, arg, var, obj, object, foo, input, output,
in#, out# and str#, where # might be a number or nothing.
In the third step the names are analyzed using the PCFG,
and names of parameters are expected to be “nouns”, while
the operation names are expected to be “verb+noun”. To
improve the PCFG in the case of operation names, the tool
adds “it must” at the beginning of the names.

Third, to detect Low cohesive operations, the tool creates
an undirected graph that represents the relations of methods
in a facade class [13]. An example of a cohesion graph
is depicted in Figure 1. The graph has three kinds of

nodes: methods, nouns in method names and classes. In
the last case, primitive-types, and Object and String classes
are enhanced with their parameter name. The nodes are
connected by the following kind of edges:

has an attribute of the type: it represents a type having
an attribute of another type.
parameter: method that receives as input a particular
type or returns a type.
parametrized with: this relationship exists when a type
is parametrized with another type, as in List<String>.
It also represents relationships through ignored types,
such as arrays or maps.
has the noun: this relationship exists between a method
and all the nouns in its name.

Once the graph including the methods of a facade class
has been generated, the tool determines whether the graph
is connected or not. Otherwise, the tool selects the largest
connected subgraph and reports methods that are not in this
subgraph as non cohesive (e.g., the method elapsedHours in
Figure 1).

To detect Generic return or parameter types, the tool uses
a known list of too generic classes [14]. If a method uses
one of these classes, the tool reports the issue. The classes
in this list are Object, Vector, List, Map, Collection, Enu-
meration, Vector<Object>, List<Object>, Map<Object,
Object>, Collection<Object> and Enumeration<Object>.

Finally, detecting Piggybacking errors in return types
involves analyzing the structure of a method output. Firstly,
the tool verifies whether a method has exceptions defined.
If this is not the case, the tool analyses the output class field
names looking for the following keywords: “ping”, “error”,
“errors”, “fault”, “faults”, “fail”, “fails”, “exception”, “ex-
ceptions”, “overflow”, “mistake”, “misplay”. These names
often indicate that the output conveys error information that
should be returned using an exception instead of placing the
information in the return value [7], [5].

IV. EMPIRICAL EVALUATION

To evaluate the effectiveness of the different issue detec-
tion techniques, we employed 81 open source Java service
implementations (facade classes) exposing 637 methods as
service operations. For each detected issue, we refactored
the Java projects to remove all the problems, and then
we generate the WSDL documents using Gapidt, i.e., we
generated a separate WSDL document set for each issue.
Since the Piggybacking errors in return types issue was not
present in the operations, we did not generated a WSDL
documents set for this issue. In addition, we generated two
sets of WSDL documents from the original Java projects
using Axis and EasyWSDL.

For evaluating how the issues impact on WSDL document
searchability, we deployed several instances of a service
registry called WSQBE [15]. This is, for each issue, a
WSQBE was deployed. Each WSQBE instance was fed with
a WSDL document set obtained from the original projects
affected by the issue, i.e., the WSDL documents generated
with Axis or EasyWSDL, one of the WSDL document sets
obtained from the refactored projects, and a random WSDL
document set that acts as noise. Notice that the number
of WSDL documents indexed was different for each issue.

This article is a pre-print of the article "H. Hirsch, A. Rodriguez, J. M. Rodriguez, C. Mateos and A. Zunino: "A Tool for Building Retrievable Code-first
Web Services". Proceedings of the 2014 ARGENCON. pp. 165-170. 2014."
The published version is available at http://dx.doi.org/10.1109/ARGENCON.2014.6868490

Cuadro II
EXPERIMENTAL SCENARIOS

Anti-pattern

Ambiguous names

Low cohesive operations

Generic return or
parameter types

Lacking or inappropriate
comments

WSDL Tools

Axis vs Gapidt

EasyWSDL vs
Gapidt

Noise level

Noise 1 (393 WSDL
documents)

Noise 2 (1,000 WSDL
documents)

Noise 3 (1,664 WSDL
documents)

Noise 4 (2,047 WSDL
documents)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4

P
re

c
is

io
n
 a

t
o
n
e
 (

in
 p

e
rc

e
n
ta

g
e
)

Noise level

Gapidt Axis Easy

Figura 2. Inappropriate or lacking comments experiment

For example, the WSQBE instance of the Ambiguous names
issue indexed 44 WSDL documents plus the noise WSDL
documents, while the number of WSDL documents involved
in the WSQBE instance of the Generic return or parameter
types issue was 7.

Using the WSQBE registry, we assessed the percentage of
queries that retrieved first the associated WSDL document.
This means that the WSDL document that was generated
using the Java class which is being used as the query, in
the first position of the list, metric known as precision-at-
1. The experimentation methodology was firstly proposed
in [6] and aimed at determining whether a registry ranks
first a WSDL document from the original set or from the
refactored ones. Their experiments have naturally shown that
the lowest accumulative precision is when a rank window
of one is taken, and rapidly grows towards 100 % when the
window size grows. However, people using search engines
tend to disregard results that are ranked after the third and
sometimes even the second position in the ranking [16].
Then, we only report precision-at-1 results. Table II depicts
the experimental variables where each scenario is defined as
a combination of an anti-pattern, a pair of WSDL tools and
a noise level.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4

P
re

c
is

io
n
 a

t
o
n
e
 (

in
 p

e
rc

e
n
ta

g
e
)

Noise level

Gapidt Axis Easy

Figura 3. Ambiguous names experiment

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4

P
re

c
is

io
n
 a

t
o
n
e
 (

in
 p

e
rc

e
n
ta

g
e
)

Noise level

Gapidt Axis Easy

Figura 4. Low cohesive methods experiment

For Inappropriate or lacking comments, the tool detected
that 503 out of the 637 analyzed methods were affected.
These methods were in 78 of the projects, which means that
3 projects were not affected by this issue. Figure 2 presents
the improvements in the search results when removing this
issue. Although this strategy did not present improvements
in the Noise 1 scenario, the precision-at-1 was doubled in
the scenarios with more noise. This seems to indicate that
correcting this issue is important for large registries with a
lower proportion of relevant services.

According to our tool, Ambiguous names affected
303 methods in 44 Web Services. Solving this issue in the
service implementation resulted in a great improvement in
the precision-at-1 (see Figure 3). When indexing the WSDL
documents generated from the original projects, WSQBE
had a precision-at-1 between 0.1 and 0.2. In contrast, when
indexing the WSDL documents of the refactored projects,
the precision-at-1 increased up to 0.52 and it was no lower
than 0.45.

With regard to Low cohesive operations (see Figure 4),
our tool detected 44 methods in 20 projects that are not
related to the main facade class functionality. This kind of
methods that are translated into operations negatively im-
pacts on service registries because they introduce irrelevant
terms into the service description, which is poorly inde-
xed instead. Furthermore, these operations might mislead
service consumers resulting in difficulties to use the servi-
ces [7]. According to the empirical evaluation, the WSQBE

This article is a pre-print of the article "H. Hirsch, A. Rodriguez, J. M. Rodriguez, C. Mateos and A. Zunino: "A Tool for Building Retrievable Code-first
Web Services". Proceedings of the 2014 ARGENCON. pp. 165-170. 2014."
The published version is available at http://dx.doi.org/10.1109/ARGENCON.2014.6868490

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4

P
re

c
is

io
n
 a

t
o
n
e
 (

in
 p

e
rc

e
n
ta

g
e
)

Noise level

Gapidt Axis Easy

Figura 5. Generic return or parameter types experiment

precision-at-1 increased from an approximated value of 0.1
to 0.5 in all the experimental scenarios.

Finally, refactoring the detected occurrences of Generic
return or parameter types results in the greatest improve-
ment in the precision-at-1. As it is depicted in Figure 5,
the precision switches from less than 0.1 to more than 0.68.
This is notable because only 23 methods in 7 facade classes
were affected. However, using generic types introduce many
irrelevant terms to WSQBE and results in WSDL documents
poorly represented, which affects negatively the performance
of the registry.

All in all refactoring the detected issues resulted in WSDL
documents that are better retrieved by the service registry. In
this context, we can ensure that solving the issues improves
the WSDL documents quality making them easier to be
found. This is important because Web Services are meant
to provide services for third-parties that search for the
functionality they need.

V. CONCLUSIONS

This work presented a novel tool that assists code-first
Web Service developers to write Java service implementa-
tions that are mapped to high quality WSDL documents. As
claimed in a previous work, this is essential for the success
of Web Service systems [4]. Although there are some tools
pursuing similar goals [6], [5], [8], as far as we know, there
are not tools aiming at directly solving the issues that lead
to all WSDL anti-patterns in code-first services. According
to our empirical evaluation, using our tool to refactor the
service implementation results in WSDL documents that are
easy to be found in service registries. In this context, the
WSDL documents that are more easily found are considered
to have better quality.

In future work, we plan to further evaluate the WSDL
documents obtained using the refactored services to effec-
tively assess to which degree the incidence of each anti-
pattern is reduced, for example by using human queries. In
addition, we plan to generate the WSDL documents from the
refactored code using Axis and EasyWSDL. This is because
some anti-patterns are actually introduced by these tools
and not by developers. For instance, Axis discards source
code comments, therefore the generated WSDL documents
will lack comments even when the service implementation
is commented.

Finally, we will analyze the impact of our tool in other
search engines, such as Lucene4WS. Furthermore, we will
apply all the refactorings at once to assess their combined
effect on service search. Finally, we will consider other
information retrieval metrics, particularly Recall and Nor-
malized Disjunctive Cumulative Gain, to better measure the
impact of the tool in service registries.

ACKNOWLEDGEMENTS

We acknowledge the financial support by ANCPyT th-
rough grant PICT-2012-0045.

REFERENCIAS

[1] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: A research roadmap,” International Journal of
Cooperative Information Systems, vol. 17, no. 2, pp. 223–255, 2008.

[2] C. Wu, “Wsdl term tokenization methods for ir-style web services
discovery,” Science of Computer Programming, vol. 77, no. 3, pp.
355 – 374, 2012.

[3] M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo, “Revising
wsdl documents: Why and how,” IEEE Internet Computing, vol. 14,
pp. 48–56, 2010.

[4] C. Mateos, M. Crasso, J. M. Rodriguez, A. Zunino, and M. Campo,
“Measuring the impact of the approach to migration in the quality
of web service interfaces,” Enterprise Information Systems, vol. In
Press, 2012.

[5] J. M. Rodriguez, M. Crasso, and A. Zunino, “An approach for
web service discoverability anti-patterns detection,” Journal of Web
Engineering, vol. 12, no. 1–2, pp. 131–158, 2013.

[6] C. Mateos, M. Crasso, A. Zunino, and J. L. Ordiales Coscia,
“Revising wsdl documents: Why and how - part ii,” IEEE Internet
Computing, vol. 17, no. 5, pp. 46–53, 2013.

[7] J. M. Rodriguez, M. Crasso, A. Zunino, and M. Campo, “Improving
web service descriptions for effective service discovery,” Science of
Computer Programming, vol. 75, no. 11, pp. 1001 – 1021, 2010.

[8] J. M. Rodriguez, M. Crasso, C. Mateos, A. Zunino, M. Campo,
and G. Salvatierra, Migrating Legacy Applications: Challenges in
Service Oriented Architecture and Cloud Computing Environments.
IGI Global, 2013, ch. The SOA Frontier: Experiences with Three
Migration Approaches, pp. 126–152.

[9] J. M. Rodriguez, M. Crasso, C. Mateos, and A. Zunino, “Best
practices for describing, consuming, and discovering web services: A
comprehensive toolset,” Software: Practice and Experience, vol. 43,
no. 6, pp. 613–639, 2013.

[10] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented
design metrics as quality indicators,” IEEE Transactions on Software
Engineering, vol. 22, no. 10, pp. 751 –761, Oct. 1996.

[11] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in
Proceedings of the 41st Meeting of the Association for Computational
Linguistics, 2003.

[12] G. A. Miller, “Wordnet: A lexical database for english,” Communi-
cations of the ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.

[13] H. S. Chae, Y. R. Kwon, and D. H. Bae, “A cohesion measure for
object-oriented classes,” Software: Practice and Experience, vol. 30,
no. 12, pp. 1405–1431, 2000.

[14] E. E. Allen and R. Cartwright, “Safe instantiation in generic java,”
Science of Computer Programming, vol. 59, no. 1-2, pp. 26–37, 2006.

[15] M. Crasso, A. Zunino, and M. Campo, “Combining query-by-example
and query expansion for simplifying Web Service discovery,” Infor-
mation Systems Frontiers, vol. 13, no. 3, pp. 407–428, 2011.

[16] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning user
interaction models for predicting web search result preferences,” in
29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’06). ACM Press,
2006, pp. 3–10.

