
The SOA Frontier. Experiences with 3 Migration
Approaches

Juan M. Rodriguez Marco Crasso Cristian Mateos
Alejandro Zunino Marcelo Campo Gonzalo Salvatierra

October 2, 2014

Abstract

Service Oriented Architecture (SOA) and Web Services are the current trend
to integrate large and distributed systems, which is a common situation in both
the business and government worlds. However, within these worlds, systems are
commonly written in COBOL because they were developed several decades ago.
Therefore, migration of COBOL systems into service-oriented architectures be-
comes a necessity. Two main approaches are used to migrate COBOL systems
to SOA systems: direct and indirect migration. Direct migration implies wrap-
ping the current COBOL routines of a system with a software layer developed
under a newer platform that can be used to offer Web Services. In contrast, in-
direct migration requires re-designing and re-implementing the COBOL routines
functionality using a newer platform as well. In this chapter, we propose a novel
migration approach, which takes the best of the two previous approaches. To as-
sess the advantages and disadvantages of these approaches, this chapter presents a
case study from a government agency COBOL system that has been migrated to a
Web Services-based system using the three approaches. As a result of having these
migration attempts, we present the trade-off between direct and indirect migration
the resulting service interfaces quality and the migration costs. These results also
show that this new migration approach offers a good balance to the above trade-off,
which makes the approach applicable to similar COBOL migration scenarios.

Keywords: SERVICES-ORIENTED ARCHITECTURE, WEB SERVICES, LEGACY
SYSTEM MIGRATION, DIRECT MIGRATION, INDIRECT MIGRATION, SER-
VICE FRONTIER, SERVICE INTERFACE DESIGN, CODE-FIRST, CONTRACT-
FIRST, SEMI-AUTOMATIC COBOL MIGRATION

1 Introduction
Information systems were adopted by enterprises several decades ago, and they have
been used ever since. As a result, operationally, most enterprises rely on old, out-of-
date systems. These systems are known as legacy systems. Well-known examples of
this kind of systems are COBOL systems because, according to Gartner consulting1,

1http://www.gartner.com

1

there are over 200 billion lines of operative COBOL still running worldwide. Further-
more, since enterprises’ goals and context vary, in time these systems have suffered
modifications to be kept suitable for the enterprises. For example, nowadays it is im-
possible to conceive a bank that does not offer Home Banking services, yet most bank
systems were originally written in COBOL. Therefore, it is common to find a 50 year
old technology, such as COBOL, working alongside with the most modern technolo-
gies [15], like .Net, AJAX, or JEE, in the same enterprise. As a result of this situation,
enterprises have to face high costs for maintaining their systems. This is mainly be-
cause these systems usually run on mainframes that must be rented. In addition, there
is the necessity of hiring developers specialized in old technologies for updating the
system functionality, which is both expensive and rather difficult.

Taking these facts into consideration, many enterprises opt for modernizing their
legacy systems using a newer technology. This process is called migration. Currently,
a common target paradigm for migrating legacy systems is SOA (Service-Oriented Ar-
chitecture) [5, 13]. In SOA, systems are built using independent functionalities called
services that can be invoked remotely. Services are offered as platform-agnostic func-
tionalities that can be used by any system inside or outside their owner organization. To
ensure platform independence, Web Services technologies are the commonest way of
implementing SOA systems since the former relies on well-known Internet protocols,
such as SOAP and HTTP [9]. Therefore, migrating legacy systems to Web Services
technologies is a fairly common practice. However, there is no standard recipe to ef-
fectively migrate legacy systems to SOA.

Recent literature [17] proposes that a legacy system can be migrated by following
two approaches. The first approach, called direct migration, consists in wrapping a
legacy system with a software layer that exposes the original system programs as Web
Services. This approach is known to be cheap and fast, but it has the disadvantage that
the legacy system is not replaced by a new one. Instead, the enterprise obtains two
systems to maintain: a legacy system, and its newly-built SOA layer. On the other
hand, the approach called indirect migration is based on re-implementing the legacy
system using a modern platform. This approach is expensive and time consuming
because not only the system should be reimplemented and re-tested, but also in some
cases the business logic embodied in the legacy system should be reverse-engineered.
This happens because system documentation could have been lost or not kept up-to-
date. The result of an indirect migration is not only an improved version of the system,
but also updated documentation for future reference.

From the SOA point of view, an important difference between direct migration and
indirect migration is the quality of the SOA frontier that is the set of Web Services ex-
posed to potential consumers as a result of migrating a legacy system. The SOA frontier
quality is a very important factor for the success of a SOA system [6, 4, 22] because,
as Figure 1 depicts, SOA frontier is used for both service registries and consumer. Ser-
vice registries use the SOA frontier for indexing services and, then, allowing service
consumers to search for them. In contrast, service consumers need the SOA frontier to
understand and invoke the services. And a SOA system success can be measure by how
many service consumers it has. This is however ignored by most enterprises as direct
migration is by nature the least expensive and fastest way of deriving a SOA frontier
from a legacy system, but such a SOA frontier commonly is a mere “Internet-ready”

2

Service Registry

Service ConsumerService Provider

SOA Frontier

SerN.wsdl

Ser1.wsdl

.....

1: Publish 3: Search

2: Index

4: Understand & Use

Figure 1: SOA frontier importance.

representation of original system program interfaces, which were not designed with
SOA best design practices or even conceived for being used by third-parties as Web
Services essentially are. Instead, a SOA frontier design is commonly benefited by the
re-implementation of original system programs during indirect migration.

To obtain a better trade-off between cost and SOA frontier quality, we have de-
veloped a new migration approach with similar quality than the one obtained using
indirect migration, but based on direct migration. Our approach, called assisted migra-
tion, takes a legacy system migrated using direct migration and performs an analysis
of possible refactoring actions to increase the SOA frontier quality. Although this ap-
proach does not remove the legacy system, we think that the obtained SOA frontier
can be used as a starting point for re-implementing it. Therefore, such a SOA frontier
smoothes system replacement because it does not change when the legacy system is
replaced by the new one.

For evaluating the viability of assisted migration, we used a case study involving
a COBOL system in which direct migration and indirect migration were applied. This
system is owned by the biggest Argentinean government agency, and manages data
related to almost the entire Argentinean population. The system was firstly migrated
using the direct migration approach because of strict deadlines. Since the SOA frontier
quality of the first migration was not suitable for new developments, the agency decided
to perform a second migration. In this case, the indirect migration approach was used
to improve the SOA frontier quality. Having these two migration attempts, we applied
the assisted migration approach by feeding it with the direct migration version of the
original system. Then, we compared the three obtained SOA frontiers in terms of cost,
time, and quality. According to this analysis, our approach produces a SOA frontier
nearly as good as that the indirect migration, but at a cost similar to that of direct
migration.

The rest of this work is organized as follows. Section 2 discusses related works on
migrating legacy system to SOA. This section also presents the case study. Section 3
outlines the traditional migration approaches, namely direct and indirect migration.
This section also explains why both methods have been applied to the same system,
and discusses the cost difference between the direct migration and indirect migration
attempts. Section 3.4 describes the proposed approach to reduce SOA frontier defi-

3

nition costs. Then, Section 3.5 discusses the effects of using each approach in terms
of SOA frontier quality. Finally, Section 5 concludes this chapter, and outlines future
research opportunities.

2 Background
Migration of mainframe legacy systems to newer platforms has been receiving lots
of attention as organizations have to shift to distributed and Web-enabled software
solutions. Different approaches have been explored, ranging from wrapping existing
systems with Web-enabled software layers, to 1-to-1 automatic conversion approaches
for converting programs in COBOL to 4GL. Therefore, current literature presents many
related experience reports.

Because migration has been a problem since the first enterprise systems started to
become obsolete, there is plenty of work on this topic. For instance, researchers have
developed several methodologies for migrating system from their original technology
to newer technologies, such as Cold Turkey, Chicken Little [7] and Renaissance [3].
Yet, these methodologies do not explicitly address how to migrate systems to SOA.
To solve this issue, researchers have developed Service-Oriented Migration and Reuse
Technique (SMART) for selecting migration strategies, but there is a lack of tools for
assisting developers to apply it [16]. In addition, SMART does not take into account
SOA frontier quality as a main concern in this kind of migration.

Another COBOL to SOA migration methodology is SOAMIG [28] that , in con-
trast with SMART, provides both a migration methodology and tools. The migration
methodology consists of four phases and each of these phases might be carried out in
several iterations. The main idea behind SOAMIG is to transform the original system
into a SOA oriented one using several translation tools. For instance, it proposes to
use a tool that translates COBOL code to Java code which is easier to expose as Web
Service. However, this approach might negatively impact on the quality of the SOA
frontier because COBOL code was designed using out-of-date design criteria, and this
kind of tools do not redesign the system. In addition, COBOL impose some length lim-
itations to routine names and comments that might be probably translated to the SOA
frontier, which might also represent a quality issue for the SOA frontier.

In this context, migrating legacy systems to SOA, while achieving high-quality
service interfaces instead of just “webizing” the systems is an incipient research topic.
Harry Sneed has been simultaneously researching on automatically converting COBOL
programs to Web Services [24] and measuring service interfaces quality [25]. In [24]
the author presents a tool for identifying COBOL programs that may be servified. The
tool bases on gathering code metrics from the source to determine program complexity,
and then suggests whether programs should be wrapped or re-engineered. As such,
programs complexity drives the selection of the migration strategy. As reported in [24],
Sneed plans to inspect resulting service interfaces using a metric suite of his own, which
comprises 25 quantity, 4 size, 5 complexity and 5 quality metrics.

In [1] the authors present a framework and guidelines for migrating a legacy system
to SOA, which aims at defining a SOA frontier having only the “optimal” services and
with an appropriate level of granularity. The framework consists of three stages. The

4

first stage is for modeling the legacy system main components and their interactions us-
ing UML. At the second stage, service operations and services processes are identified.
The third stage is for aggregating identified service elements, according to a prede-
fined taxonomy of service types (e.g. CRUD Services, Infrastructure services, Utility
services, and Business services). During the second and third stages, software ana-
lysts are assisted via clustering techniques, which automatically group together similar
service operations and services of the same type.

This work presents a comparison of applying different migration approaches. Two
of them together with their pros and cons are well-known within the community, while
the other is a new approach that aims at obtaining the pros of both previous migra-
tion without their cons. The following section discusses the case study used for this
analysis.

2.1 Case Study
The case under study in this work consists of a data-centric system composed of several
subsystems for maintaining data records related to individuals including complete per-
sonal information, relationships, work background, received benefits, and so forth. The
system is written in COBOL, runs on an IBM mainframe and accesses a DB2 database
with around 0.8 PetaBytes. On the other hand, there are some COBOL programs ac-
cessing historic data through VSAM (Virtual Storage Access Method), a storage and
data access method featured by a number of IBM mainframe operating systems. More-
over, some of the COBOL programs are only accessed through an intra-net via 3270
terminal applications, while other programs are grouped in CICS (Customer Informa-
tion Control System) transactions and consumed by Web applications. CICS is a trans-
action manager designed for rapid, high-volume processing, which allows organizing
a set of programs as an atomic task. In this case, these programs consist of business
logic and database accesses, mostly input validations and queries, respectively.

Table 1: Characteristics of most important system transactions according to the main-
frame load in terms of executed calls during January 2010.

Transaction SQL COMMAREA(s) Include(s)

of lines # of queries # of lines # of files # of lines # of files

265 2 518 7 683 6

416 2 1114 6 141 5

537 3 10 2 800 29

1088 10 820 4 580 16

543 10 820 4 411 10

705 10 956 6 411 10

For the sake of illustration, a brief overview of only 6 transactions is shown in

5

Table 1, which indicates the number of non-commented source code lines2, the num-
ber of SQL queries performed, and the number of lines and files associated with a
transaction. When a program P1 calls a program P2, or imports a Communication
Area (COMMAREA) definition C, or includes an SQL definition S, it is said that
P1 is associated with P2, or C, or S, respectively. On average, each transaction had
18 files, comprised 1803 lines of code, and performed 6 SQL SELECT statements.

3 Employed Migration Approaches
The system described in the previous section has been migrated to a SOA system by
employing two different migration approaches. Clearly, this is an uncommon situation
in practice, however each migration attempt has reasonable reasons behind them.

The first migration attempt was originated by the need for providing Web access to
the legacy system functionality with critic time deadlines and no more resources than
the agency’s IT department resources present at the moment. In other words, the system
needed to be rapidly migrated by permanent staff and using the software development
tools which the agency had licenses for use them. One year after, the agency IT mem-
bers outsourced the second migration attempt to a recognized group of researchers with
remarkable antecedents in SOC, Web Services, and Web Services interface design. The
reason to do this was that the project managers responsible for building the Web ap-
plications found the resulting SOA frontier from the first migration attempt extremely
hard to be understood and consequently reused. The next subsections explain each mi-
gration attempt in detail. Finally, we have applied a third migration in the context of a
research project in which the agency was not involved.

3.1 Direct migration
Methodologically, the IT department members followed a wrapping strategy [2] that
comprised 4 steps for each migrated transaction:

1. Automatically creating a COM+ object including a method with the inputs/out-
puts defined in the associated COMMAREA, which forwards invocations to the
underlying transaction. This was done by using a tool called COMTI Builder [14].

2. Automatically wrapping the COM+ object with a C# class having only one
method that invokes this object by using Visual Studio.

3. Manually including specific annotations in the C# code to deploy it and use the
framework-level services of the .NET platform for generating the WSDL docu-
ment and handling SOAP requests.

4. Testing the communication between the final Web Service and its associated
transaction. This was performed by means of a free tool called soapUI (http:
//www.soapui.org).

2SLOC metric for COBOL source code was calculated using the SLOCCount utility available at http:
//www.dwheeler.com/sloccount, which does not count commented lines.

6

To clarify these 4 steps a word about the employed technologies and tools is needed.
A COMMAREA is a fixed region in the RAM of the mainframe that is used to pass
data from an application to a transaction. Conceptually, a COMMAREA is similar to a
C++ struct with (nested) fields specified by using native COBOL data-types. COMTI
(Component Object Model Transaction Integrator) is a technology that allows a trans-
action to be wrapped with a COM+ (Component Object Model Plus) object. The tool
named COMTI Builder receives a COMMAREA as input to automatically derive a
type library (TLB), which is accessible from any component of the .NET framework
as a COM+ object afterwards. COM+ is an extension to COM that adds a new set of
functions to introspect components at run-time. Finally, the tool listed in 4) receives
one or more WSDL documents and automatically generates a client for the associated
service(s), which allows the generation of test suites.

Basically, each step, but step 4, adds a software layer to the original transactions.
In this context, the Wrapper Design Pattern is central to the employed steps, since
wrapping consists in implementing a software component interface by reusing existing
components, which can be any of a batch program, an on-line transaction, a program,
a module, or even just a simple block of code. Wrappers not only implement the
interface that newly developed objects use to access the wrapped systems, but are also
responsible for passing input/output parameters to the encapsulated components. Then,
from the inner to the outer part of a final service, by following the described steps
the associated transaction was first wrapped with a COMTI object, which in turn was
wrapped by a COM+ object, which finally was wrapped by a C# class that in the end
was offered as a Web Service. To do this, implementation classes were deployed as
.NET ASP 2.0 Web Service Applications, which used the framework-level services
provided by the .NET platform for generating the corresponding WSDL document and
handling SOAP requests. As the reader can see, the SOA frontier was automatically
derived from the C# code, which means that WSDL documents were not made by
human developers but they were automatically generated by the .NET platform. This
WSDL document construction method is known as code-first [19].

3.2 Indirect migration
Methodologically, the whole indirect migration attempt basically implied five steps:

1. Manually defining potential WSDL documents basing on the knowledge the
agency had on the interface and functionality of the original transactions. For
each service operation, a brief explanation using WSDL documentation elements
was included.

2. Exhaustively revising the legacy source code.

3. Manually refining the WSDL documents defined during step 1 by basing on
opportunities to abstract and reuse parameter data-type definitions, group func-
tionally related transactions into one cohesive service, improve textual comments
and remove duplicated transactions, which were detected at step 2. For data-type
definitions, we followed best practices for naming type elements and constrain-
ing their ranges.

7

4. Supplying the WSDL documents defined at step 3 with implementations using
.NET.

5. Testing the migrated services with the help of the agency IT department.

During the step 1, three specialists on Web Services technologies designed prelimi-
nary WSDL documents, based on the knowledge the agency had on the functionality
of the transactions, to sketch the desired SOA frontier together. This step comprised
daily meetings not only between the specialists and the project managers in charge of
the original COBOL programs, but also between the specialists and the project man-
agers responsible for developing client applications that would consume the resulting
migrated Web Services. Unlike the code-first approach, in which service interfaces
are derived from their implementations, the three specialists used contract-first, which
encourages designers to first derive the technical contract of a service using WSDL,
and then supply an implementation for it. Usually, this approach leads to WSDL docu-
ments that better reflect the business services of an organization, but it is not commonly
used in industry since it requires WSDL specialists [20]. This step might be carried out
by defining service interfaces in C# and then using code-first for generating WSDL
documents, especially when analysts with little WSDL skills are available.

The step 2 involved revising the transactions code with the help of documents spec-
ifying functionality and diagrams illustrating the dependencies between the various
transactions to obtain an overview of them. This was done to output a high-level analy-
sis of the involved business logic, since the existing COBOL to some extent conditioned
the functionality that could be offered by the resulting services. The target transactions
comprised 261688 lines of CICS/COBOL code (600 files). Six software analysts ex-
haustively revised each transaction and its associated files under the supervision of the
specialists during three months. This allowed the external work team to obtain a big
picture of the existing transactions.

The step 3 consisted in refining the WSDL documents obtained in the step 5 by
basing on the output of the step 2. Broadly, the three specialists abstracted and reused
parameter data-type definitions, grouped functionally related transactions into one co-
hesive service, improved textual comments and names, and removed duplicated trans-
actions. For data-type definitions, the specialists followed best practices for naming
type elements and constraining their ranges. From this thorough analysis, potential in-
terfaces were derived for the target services and a preliminary XSD schema document
subsuming the entities implicitly conveyed in the original COMMAREA definitions.
Conceptually, this represented a meet-in-the-middle approach to service migration that
allowed the specialists to iteratively build the final service interfaces based on the de-
sired business services, which impact on the implementation of services, as well as the
interfaces derived from the existing CICS/COBOL code, which to some extent condi-
tion the functionality that can be exposed by the resulting software services.

The step 4 was re-implementing the services and began once the WSDL docu-
ments were defined. Two more people were incorporated in the project for imple-
menting the services using the .NET ASP 2.0 Web Service Application template as
required by the agency. Hence, the 3 specialists trained 8 software developers in Visual

8

Table 2: Required manpower over months of the indirect migration attempt.

Step People Role Time (in months)

1 3 WSDL specialists 1

2 6 Software analysts 3

3 3 WSDL specialists 1

4 8 Software developers 6

5 8 Software developers 2

Studio 2008, C# and a data mapper, called MyBatis3. This library frees developers
from coding typical conversions between database-specific data-types and program-
ming language-specific ones. MyBatis connects to DB2 mainframe databases using
IBM’s DB2Connect4, an infrastructure for connecting Web, Windows, UNIX, Linux
and mobile applications to z/OS and mainframe back-end data. It is worth noting that
to bind the defined WSDL documents with their .NET implementations, the specialists
had to extend the ASP 2.0 “httpModules” support. Concretely, the three specialists
developed a custom module that returns a manually specified WSDL document to ap-
plications, instead of generating it from source code, which is the default behavior of
.NET.

The step 5 was to test the resulting services with assistance of the agency IT de-
partment. Basically, each new Web Service was compared to its CICS/COBOL coun-
terpart(s) to verify that with the same input the same output was obtained. If some
inconsistency between the new services and the old CICS/COBOL system was de-
tected, the services were revised and re-tested. This step was repeated until the agency
IT department had the confidence that the new SOA-based system was as good as the
old system from both a functional and non-functional point of view.

3.3 Costs comparison of the direct and indirect migration attempts
As reported by the agency’s IT department, it took 1 day to train a developer on the
direct migration method and the three tools employed, namely COMTI Builder, Vi-
sual Studio and soapUI5. Then, trained developers migrated one transaction per hour,
mostly because all the steps but one (step 3) were tool-supported and automatic. Since
the agency had the respective software licenses for COMTI Builder and Visual Studio
tools beforehand, choosing them was a harmless decision from an economical view-
point.

Regarding the costs of the indirect migration attempt, monetarily, it cost the agency
320000 US dollars. Table 2 details the human resources involved in the second attempt
of the project. All in all, it took one year plus one month for 6 software analysts, 2 more

3MyBatis,http://www.mybatis.org/dotnet.html
4IBM’s DB2Connect, http://www-01.ibm.com/software/data/db2/db2connect/
5Professional and paid versions of the two first tools were used, whereas a standard and free version of

soapUI was employed.

9

Table 3: Costs comparison for the migration of 32 transactions during direct and indi-
rect attempts.

Resources First attempt: direct
migration

Second attempt: indirect
migration

Developers 1 8

Specialists 0 3

Time 5 days 13 months

Money u$s 3,000 (*) u$s 320000
(*) This was the average monthly salary in Argentine for a senior .NET Developer at the time of the bottom-up migration

attempt.

developers incorporated at step 4, and 3 specialists to migrate 32 priority transactions.
It is worth noting that no commercial tools were needed, apart from the IDE for which
the agency already had licenses.

Table 3 presents an illustrative comparison of the resources needed by each migra-
tion attempt. The first migration attempt succeeded in delivering Web Services within
a short period of time and without expending lots of resources, by employing a di-
rect migration approach with wrapping. As shown in the second column of the Table,
with the associated methods and tool-set, it only took 5 days and 1 senior developer
to migrate 32 CICS/COBOL transactions. It is worth noting that the first attempt was
inexpensive since no software licenses had to be bought, and no developers had to be
hired, i.e. a regular member of the IT department performed the first migration attempt.
However, this could be not the case for many enterprises and therefore there may be
costs associated to buying the necessary tool-set and hiring external manpower when
performing a direct migration with wrapping. In contrast, an indirect migration attempt
with re-engineering was much more expensive and required more time to be completed.
In particular, 8 junior developers (undergraduate UNICEN students), 3 Web Services
specialists (UNICEN researchers with a PhD. and several publications in the Web Ser-
vice area), 13 months and 320000 US dollars for re-engineering the same 32 transac-
tions were required. For this attempt, external specialists and developers were hired,
whose salaries have been included in this cost.

3.4 Assisted Migration: Software-Assisted SOA frontier definition
From the previous section it is clear that the indirect migration approach demanded
much more resources than its direct counterpart. Indeed, as shown in Table 2, near a
half of the time demanded by the indirect attempt was for defining service interfaces.
Concretely, the output of steps 1, 2, and 3 of the indirect migration method employed,
was the WSDL documents of the SOA frontier, and these steps took 5 months. Regard-
ing needed people, the mentioned three steps required 3 WSDL experts and 6 software
developers more than the direct migration attempt. Therefore, we have explored the
hypothesis that, to some extent, some of the tasks performed for defining the SOA

10

Anti-patterns root causes

detection

<<AUTOMATIC>>

OO refactorings suggestion

<<AUTOMATIC>>

OO refactorings application

<<MANUAL>>

[Improvement

opportunities detected?]

[NO]

[YES]

Figure 2: Software-assisted SOA frontier definition steps.

frontier could be automated, improving migration efficiency.
Basically, we propose a fast and cheap approach to imitate the tasks performed at

some of the steps of the employed indirect migration approach. These tasks include
exhaustively analyzing the legacy source code (step 2), and supplying software ana-
lysts with guidelines for manually refining the WSDL documents of the SOA frontier
(step 3). The step 1, in which interviews were conducted, was left out of the scope of
this approach. Thus, the input of this approach was the SOA frontier of the direct mi-
gration attempt, instead of those WSDL documents that were sketched together during
the meetings of the indirect attempt.

The proposed approach can be iteratively executed for generating a refined SOA
frontier at each iteration. The main idea is to iteratively improve the defined service
interfaces, by removing those WSDL anti-patterns present in them. A WSDL anti-
pattern is a recurrent practice that hinders Web Services chances of being discovered
and understood by third-parties. In [23] the authors present a catalog of WSDL anti-
patterns and describe each of them in a general way by including a description of the
underlying problem, its solution, and an illustrative example. Then, the catalog of anti-
patterns can be used to compare two WSDL-modeled SOA frontiers. Specifically, one
could account anti-pattern occurrences within a given set of service interfaces because
the fewer the occurrences are, the better the resulting WSDL documents are in terms
of discoverability and understandability.

Figure 2 depicts the proposed steps. Mainly, these steps can be organized in two
groups, automatic and manual. First, our approach starts by automatically detecting
potential WSDL anti-patterns root causes within the SOA frontier given as input its
WSDL documents plus their underlying implementation (“Anti-patterns root causes
detection” step). Then, a course of actions to improve the SOA frontier is generated
(“OO refactorings suggestion” step). The manual step “OO refactorings application”
takes place when the software analysts in charge of migration apply the suggested
refactoring actions. Accordingly, software analysts obtain a new SOA frontier and fed
it to the anti-patterns root causes detection step. Notice that although this approach
uses as input the COBOL code and the SOA frontier generated by the direct migration,
the proposed refactorings are intended to be applied on the SOA frontier and the SOA-
enabled wrapper, i.e. the COBOL wrapping software layer and the WSDL documents.
Hence, the resulting SOA frontier can be deployed over the legacy system without
disrupting its normal operation. The next subsections describe both groups of steps.

In the following two sections, we describe how the automatic steps of the assisted
migration are performed. In Section 3.4.1, we present how the WSDL anti-patterns root
causes are detected. In Section 3.4.2, we outline how OO refactorings are suggested.

11

Finally, in Section 3.4.3, we describe how much takes to perform these steps, which are
automatic. How to apply OO refactorings is not described through this section because
it is out of this chapter scope and there is plenty of literature on that topic [11].

3.4.1 Anti-patterns root causes detection

One of the lessons learned from past migration experiences is that manually revising
legacy system source code is a cumbersome endeavor. However, such an exhaustive
code revision is crucial not only because the legacy system implementation conditions
the functionality that can be exposed by the resulting SOA frontier, but also to detect
service interfaces improvement opportunities. Thus, the anti-pattern root causes de-
tection step is performed automatically. To do this, by basing on the work published
in [22], we have defined and implemented the ten heuristics summarized in Table 4.
Broadly, a defined heuristic receives the implementation in CICS/COBOL of a mi-
grated transaction or its associated WSDL document. Then, a heuristic outputs whether
specific anti-patterns root causes are present in the given input or not. Actually, in most
cases a heuristic output does not provide enough evidence of anti-patterns root causes
existences by itself. Therefore, some heuristics have been combined as follows:

• 8 and 9→ Remove redundant operations

• 4→ Improve error handling definitions

• 3 or 5 or 6 or 7→ Improve business object definitions

• 8→ Expose shared programs as services

• 1 and 2→ Improve names and comments

• 10→ Improve service operations cohesion

, where several heuristic ids (see column Id from Table 4) are logically combined
within rules antecedents and WSDL document improvement opportunities are rules
consequents. It is worth noting that we will refer to WSDL document improvement
opportunity, on analogy with removing particular WSDL anti-patterns root causes. For
instance, the first rule is for detecting the opportunity to remove redundant operations,
which may be the origin of at least two anti-patterns, namely Redundant Port-types
and Redundant Data Model [23]. When processing COBOL code, this rule is fired
when two or more programs share the same dependencies (heuristic 8) but also the
parameters of one program subsume the parameters of the other program (heuristic 9).

Most heuristics have been adapted from [22], whereas heuristics 6, 7, 8, 9 and
10 were inspired by the migration attempt. Thus, heuristics 6 to 10 will be further
explained next. With regard to “Looking for data-types with inconsistent names and
types” (id 6), the heuristic analyzes names and data-types of service operations param-
eters to look for known relationships between names and types. Given a parameter, the
heuristic splits the parameter name by basing on classic programmers’ naming conven-
tions, such as Camel Casing and Hungarian notation. Each name token is compared
to a list of keywords with which a data-type is commonly associated. For example,

12

Table 4: Heuristics for detecting WSDL anti-patterns root causes.

Id Description Input Output

1

Look for comments in
WSDL <documentation>

elements

WSDL
document

true: if at least one operation lacks documentation
false: otherwise

2

Search inappropriate
names for services,

port-types, operations and
arguments

WSDL
document

true: when the length of a name token is lower than 3 characters (e.g.
“c_person”, token “c” has 1 character), or when token refers to a technology

(e.g. “PeopleDetailsSOAP”), or when an operation name contains two or more
verbs or an argument name contains a verb

false: otherwise

3

Detect operations that
receive or return too many

parameters

WSDL
document

true: when at least one operation input/output has more than P parameters
false: otherwise

4

Look for error information
being exchanged as output

data

WSDL
document

true: when an output message part has any of the tokens: “error”, ”errors”,
”fault”, ”faults”, ”fail”, ”fails”, ”exception, ”exceptions,”overflow”, ”mistake”,

”misplay”
false:otherwise

5
Look for redundant
data-type definitions

WSDL
document

true: when at least two XSD data-types are syntactically identical
false: otherwise

6

Look for data-types with
inconsistent names and

types

WSDL
document

true: when the name of a parameter denotes a quantity but it is not associated
with a numerical data-type (e.g. numberOfChildren:String)

false: otherwise

7
Detect not used

parameters
COBOL

source code

true: when at least one parameter is not associated with a COBOL MOVE
statement

false: otherwise

8

Look for shared
dependencies among two
service implementations

COBOL
source code

A list of COBOL programs that are copied, or included, or called from two or
more service implementations. The list is empty when no shared dependencies

are found
true: when the list is not empty

false: otherwise

9
Look for data-types that

subsumes other data-types
WSDL

document

true: when an XSD complex data-type contains another complex XSD
data-type, or a list of parameters subsumes another list of parameters

false: otherwise

10

Detect semantically
similar services and

operations

WSDL
document

true: when a vectorial representation of the names and associated
documentation of two services or operations, are near in a vector space model

false: otherwise

13

the token “birthday” is commonly associated with the XSD built-in xsd:date data-type,
but the token “number” with xsd:int data-type. Therefore, the heuristic in turn checks
whether at least one name token is wrongly associated with the parameter data-type.

The heuristic to “Detect not used parameters” (id 7) receives the COBOL source
code of a migrated program and checks whether every parameter of the program out-
put COMMAREA is associated with the programming language assignation statement,
i.e. the COBOL MOVE reserved word. In other words, given a COBOL program, the
heuristic retrieves its output COMMAREA, then gets every parameter from within it,
even parameters grouped by COBOL records, and finally looks for MOVE statements
having the declared parameter. One limitation of this heuristic is that the search for
MOVE statements is only performed in the main COBOL program, whereas copied or
included programs are left aside, and those parameters that are assigned by the execu-
tion of an SQL statement are ignored by this heuristic.

The heuristic to “Look for shared dependencies among two service implementa-
tions” (id 8) receives two COBOL programs as input. For each program builds a list
of external COBOL programs, copies, and includes, which are called from the main
program, and finally checks whether the intersection of both lists is empty or not. In
order to determine external programs calls, the heuristic looks for the CALL reserved
word.

With regard to “Look for data-types that subsumes other data-types” heuristic (id 9),
this receives a WSDL document as input and detects the inclusion of one or more pa-
rameters of a service operation in the operations of another service. To do this, pa-
rameter names and data-types are compared. For comparing names classic text prepro-
cessing techniques are applied, namely split combined words, remove stop-words, and
reduce them to stems. For comparing data-types the heuristic employs the algorithm
named Redundant Data Model, which is presented in [22].

The tenth heuristic, namely “Detect semantically similar services and operations”,
is based on measuring the similarity among textual information of a pair of services or
operations. This heuristic exploits textual information present in WSDL names and
documentation elements. Textual similarity is assessed by representing associated tex-
tual information as a collection of terms and in turn as a vector in a multi-dimensional
space. For each term, there is a dimension in the space, and the respective vector
component takes as value the term frequency. Finally, looking for similar operations
reduces to looking for near vectors in the space by comparing the cosine of the angle
among them [26].

3.4.2 Object-Oriented refactorings suggestion

Until now, this section focused on the first part of the proposed approach, which is
intended to reproduce the task of exhaustively looking for SOA frontier improvement
opportunities within a legacy source code. Once we have all the evidence gathered by
the heuristics, the second part of the proposed approach consists of providing practical
guidelines to remove the potential anti-patterns root causes detected. These guidelines
consist of a sequence of steps that should be revised and potentially applied by the
development team in charge of the migration attempt. It is worth noting that the pro-
posed guidelines are not meant to be automatic, mostly due to the fact that there is not a

14

Table 5: Association between SOA frontier refactorings and Fowler et al.’s refactorings.

SOA Frontier Refactoring Object-Oriented Refactoring

Remove redundant operations 1: Extract Method ∨ Extract Class

Improve error handling definition 1: Replace Error Code With Exception

1: Convert Procedural Design to Object ∧ Replace Conditional with

Polymorphism

2: Inline Class

Improve business objects definition
3: Extract Class ∧ Extract Subclass ∧ Extract Superclass ∧ Collapse

Hierarchy

4: Remove Control Flag ∧ Remove Parameter

5: Replace Type Code with Class ∧ Replace Type Code with Subclasses

Expose shared programs as services 1: Extract Method ∨ Extract Class

Improve names and comments 1: Rename Method ∨ Preserve Whole Object ∨

Introduce Parameter Object ∨ Replace Parameter with Explicit Methods

Improve service operations cohesion
1: Inline Class ∧ Rename Method

2: Move Method ∨ Move Class

unique approach to build a SOA frontier and in turn improve or modify it, which makes
the automation of these proposed guidelines non-deterministic.

The cornerstone of the proposed guidelines is that classic Object-Oriented (OO)
refactorings can be employed to remove anti-patterns root causes from a SOA fron-
tier. The rationale behind this is that services are described as OO interfaces exchang-
ing messages, whereas operation data-types are described using XSD, which provides
some operators for expressing encapsulation and inheritance. Then, we have organized
a sub-set of Fowler et al.’s catalog of OO refactorings [11], in order to provide a se-
quence of refactorings that should be performed for removing each anti-pattern root
cause. This work bases on Fowler et al.’s catalog since it is well-known by the soft-
ware community and most IDEs provide automatic support for many of the associated
refactorings.

The proposed guidelines associate a SOA frontier improvement opportunity with
one or more logical combinations of traditional OO refactorings (see Table 5). The first
column of the Table presents SOA frontier improvement opportunities, while the sec-
ond column describes which OO refactorings from [11] should be applied. As shown in
the second column, the OO refactorings are arranged in sequences of refactoring com-
binations. Combining two refactorings by “∨” means that software developers may
choose among them, i.e. they should apply only one refactoring from the set. Instead,
using “∧” means that the corresponding refactorings should be applied in that strict
order. Moreover, in the cases of “Improve business objects definition” and “Improve
service operations cohesion”, the associated refactorings comprise more than one step.
This means that at each individual step developers should analyze and apply the asso-

15

ciated refactorings combinations as explained.
Regarding how to apply OO refactorings, it depends on how the WSDL documents

of the SOA frontier have been built. Broadly, as mentioned earlier, there are two main
approaches to build WSDL documents, namely code-first and contract-first. Code-first
refers to automatically extracting service interfaces from their underlying implemen-
tation. For instance, let us suppose a Java class named CalculatorService that has
one method signature sum(int i0, int i1):int. Then, its code-first WSDL document will
have a port-type named CalculatorService with one operation sum related to an in-
put message for exchanging two integers and an output message that conveys another
integer. Here, the CalculatorService class represents the outermost component of the
service implementation. On the other hand, when following the contract-first approach,
developers should first define service interfaces using WSDL and then supplying im-
plementations for them in their preferred programming language.

Then, when the WSDL documents of a SOA frontier have been implemented un-
der code-first, the proposed guidelines should be applied on the outermost components
of the services implementation. Instead, when contract-first has been followed, the
proposed OO refactorings should be applied on the WSDL documents. For instance,
to remove redundant operations from a code-first Web Service, developers should ap-
ply the “Extract Method” or the “Extract Class” refactorings on the underlying class
that implements the service. In case of a contract-first Web Service, by extracting an
operation or a port-type from the WSDL document of the service, developers apply
the “Extract Method” or the“Extract Class” refactorings, respectively. When contract-
first is used, developers should also update service implementations for each modified
WSDL document.

3.4.3 Empirically assessing time demanded for executing heuristics and per-
forming OO refactorings

We hypothesized that automatizing some steps of the indirect migration attempt could
reduce the time demanded for executing heuristics and performing OO refactorings.
We have empirically assessed the time demanded by each heuristic for analyzing the
legacy system under study. The experiments have been run on a notebook with a
2.8 GHz QuadCore Intel Core i7 720QM processor, 6 Gb DDR3 RAM, running Win-
dows 7 on a 64 bits architecture. To mitigate noise introduced by underlying software
layers and hardware elements, each heuristic has been executed 20 times and the de-
manded time was measured per execution. Then, the heuristic executions times have
been averaged. Table 6 summarizes the average time required for each automatic op-
eration. Briefly, the average execution time of an heuristic was 9585.78 milliseconds
(ms), being 55815.15 ms (less than one minute) the biggest achieved response time,
i.e. the “Detect semantically similar services and operations” was the most expensive
heuristic in terms of response time.

Furthermore, we have assessed the time demanded for manually applying the OO
refactorings proposed by the approach on the SOA frontier resulted from the direct
migration attempt. To do this, one software analyst with full knowledge about the
system under study was supplied with the list of OO refactorings produced by the
approach. It took two full days to apply the proposed OO refactorings. It is worth

16

Table 6: Average operation time.
Operation Time

Look for comments in WSDL <documentation> elements 56.55 ms

Search inappropriate names for services, port-types, operations and arguments 39460.25 ms

Detect operations that receive or return too many parameters 58.7 ms

Look for error information being exchanged as output data 57.75 ms

Look for redundant data-type definitions 60.9 ms

Look for data-types with inconsistent names and types 93.45 ms

Detect unused parameters 56.45 ms

Look for shared dependencies among two service implementations 82.95 ms

Look for data-types that subsumes other data-types 115.70 ms

Detect semantically similar services and operations 55815.15 ms

noting that OO refactorings have been applied at the interface level, i.e. underlying
implementations have not been accommodated to interface changes. The reason to
do that was that we only want to generate a new SOA frontier and then compare it
with the ones generated by the previous two migration attempts. Therefore, modifying
interfaces implementation, which would require a huge development and testing effort,
will not contribute to verifying the aforementioned hypothesis. All in all, to have an
approximation of what the total cost of migrating the system under study with this
approach would be, let assume that the cost for supplying the refactored SOA frontier
with implementations will be near to the cost of step 4 plus step 5 of the indirect
approach. Returning to Table 2, the first three rows can be condensed in one row
with one software analyst, who must known the system in order to promptly apply OO
refactorings suggested, and 2 days.

To sum up, the migration approach described in this section aims at automatically
reproducing some of the steps of the indirect migration approach, so that their inherent
costs are mitigated and at the same time a SOA frontier with an acceptable quality is
obtained. In this sense, the next section provides empirical evidence on the service
frontier quality achieved by the three approaches to legacy software migration to SOA
described so far, namely direct migration, indirect migration, and our software-assisted
migration.

3.5 Service Interface Quality Comparison
After migrating a system, the resulting service interface quality might be affected by
several factors related to the migration methodology, and the original system design.
While direct migration interfaces heavily depend on the original system design, indirect
migration interfaces might be independent of it because indirect migration means re-
implementing the old system with new technologies and design criteria. Despite having
better results in terms of SOA frontier, indirect migration is known to be costly, and
time consuming. The assisted migration approach then tries to balance the trade-off
between cost and interfaces quality, hence this section presents evidence that assisted
migration produces much better service interfaces than direct migration at a fraction of

17

the indirect migration cost.
The evaluation relies not only on a quantitative analysis of lines of code (LOC),

lines of comments, and offered operations, but also on a well-established set of quality
metrics for WSDL-based interfaces [23]. The advantage of the quantitative analysis is
that they are accepted as providers of evidence about system quality in general. More-
over, the advantage over other set of metrics is that they are WSDL document oriented,
thereby they are suitable for comparing SOA frontiers quality. These metrics are based
on a catalog of common bad practices found in public WSDL documents. These bad
practices, which are presented in the well-known anti-pattern form, jeopardize Web
Service discoverability, understandability, and legibility. We have used anti-pattern oc-
currences as a quality indicator because the fewer the occurrences are, the better the
WSDL documents are. In addition, we have analyzed business object definitions reuse
by counting repeated data-type definitions across WSDL documents, and the use of
XSD files to define shared data-types. Notice that other typical non-functional require-
ments [18], such as performance, reliability or scalability, have intentionally not been
considered since we were interested in WSDL document quality after migration. It is
worth noting that though the metrics were gathered from the case study presented in
Section 2.1, the examples used through this section are general because of our confi-
dentiality agreement with the agency.

The comparison methodology consisted of gathering the aforementioned metrics
from the SOA frontiers that resulted from each migration attempt. In this sense, three
data-sets of WSDL documents were obtained, namely:

• Direct Migration: The WSDL documents that resulted from the first attempt of
the project. As such, the associated services were obtained by using direct mi-
gration and implementing wrappers to the transactions, and by using the default
tool-set provided by Visual Studio 2008 that supports code-first generation of
service interfaces from C# code.

• Indirect Migration: The WSDL documents obtained from the approach followed
during the second attempt of the project, i.e. indirect migration and at the same
time the contract-first WSDL generation method.

• Software-Assisted SOA Frontier Definition (or Assisted Migration for short): The
WSDL documents obtained after automatically detecting improvement opportu-
nities on the direct migration data-set, and in turn applying the associated sug-
gested guidelines.

The next subsections present the quantitative metrics comparison results, the qualitative
comparison and the data-model reuse analysis, respectively.

3.5.1 Quantitative analysis

Firstly, there was a significant difference in the number of WSDL document generated
by each approach. As Table 7 shows, Direct Migration data-set comprised 32 WSDL
documents, which means one WSDL document per migrated transaction. In contrast,
Indirect Migration and Assisted Migration data-sets had respectively 7 WSDL doc-
uments + 1 XSD file, and 16 WSDL documents + 1 XSD file. The first advantage

18

Table 7: Classical metrics.
Approach WSDL documents Offered

operations
LOC

per file
LOC

per
opera-

tion

Comments
per file

%
Com-
ments

Direct Migration 32 WSDL documents 39 157.25 129 0.00 0.00%

Indirect Migration 7 WSDL documents + 1 XSD file 45 495.5 88 30.25 6.10%

Assisted Migration 16 WSDL documents + 1 XSD file 41 235.35 97 15.41 6.54%

observed in the Indirect Migration and Assisted Migration data-sets over Direct Migra-
tion data-set was the XSD file used for sharing common data-type definitions across
the WSDL documents. In addition, having less WSDL documents means that several
operations were in the same WSDL document. This happened because the WSDL
documents belonging to Indirect Migration and Assisted Migration data-sets were de-
signed to define functional related operations in the same WSDL document, which is a
well-known design principle [27].

Secondly, the number of offered operations was: 39, 45, and 41 for Direct Migra-
tion, Indirect Migration, and Assisted Migration data-sets. Although originally there
were 32 transactions to migrate, Direct Migration resulted in 39 operations because
one specific transaction was divided into 8 operations. This transaction used a large
registry of possible search parameters plus a control couple to select which parameters
upon a particular search represent the desired input, ignoring the rest of them. During
the first migration attempt, this transaction was wrapped with 8 operations with more
descriptive names, and each of them end up calling the same COBOL routine with a
different control couple.

On the other hand, the second and third attempts further divided the CICS/COBOL
transactions into more operations. There were two main reasons for this, namely dis-
aggregating functionality and making public common functionality. Disaggregating
functionality means that some transactions, which returned almost 100 output param-
eters, had various purposes, thus they were mapped to several purpose-specific service
operations. The second reason was that several transactions internally call the same
COBOL routines, which might be useful for potential service consumers. In conse-
quence, what used to be COBOL internal routines now are also part of the SOA frontier
offered by the agency.

The resulting average LOC per file, and per operation were also a difference among
the data-sets. Although Indirect Migration data-set had more LOC per file than the
other two data-sets, it also resulted in less files. However, the number of LOC per
operation of the Indirect Migration data-set was the lowest. Interestingly, the Assisted
Migration presented a slightly higher number of LOC per operation than the Indirect
Migration data-set. In contrast, the number of LOC resulted from applying the first
migration attempt was more than twice as much as the LOC generated by other ap-
proaches. This means that a service consumer must read more code to understand what
an operation does and how to call it. Basically, this makes using the WSDL documents
of the Direct Migration data-set harder than using the WSDL documents from both

19

Indirect Migration and Assisted Migration data-sets.
Table 7 also points out the difference in the number of comment lines of WSDL and

XSD code per document. Firstly, WSDL documents belonging to the Direct Migration
data-set had no comments because the tools are unable to correctly pass COBOL com-
ments on to COM+ wrappers, and then to WSDL documents. Besides, developers that
used these tools did not bother about placing comments manually, which is consistent
with the findings reported by previous studies [10, 22]. In contrast, Indirect Migration
and Assisted Migration WSDL documents had 30.25 and 16 lines of comments per file,
respectively. Despite having more comment lines per file, the percentage of comment
lines in Indirect Migration WSDL documents were slightly lower that the percentage
of comment lines in Assisted Migration WSDL documents.

3.5.2 Anti-Pattern assessment

Web Service discoverability anti-patterns were inferred from real-life WSDL document
data-sets [21]. These anti-patterns encompass bad practices that affect the ability of a
service consumer to understand what a service does, and how to use it. Therefore, these
anti-patterns’ occurrences can be used to evaluate how good a SOA frontier is. Hence,
we used the anti-patterns to measure the quality of the WSDL document generated by
the different migration approaches. In particular, we found the following anti-patterns
in at least one of the WSDL documents in the three data-sets:

• Inappropriate or lacking comments [10]: Some operations within a WSDL have
no comments or the comments do not effectively describe their associated ele-
ments (messages, operations).

• Ambiguous names [6]: Some WSDL operation or message names do not accu-
rately represent their intended semantics.

• Redundant port-types: A port-type is repeated within the WSDL document, usu-
ally in the form of one port-type instance per binding type (e.g. HTTP, HTTPS
or SOAP).

• Enclosed data model: The data model in XSD describing input and output data-
types is defined within the WSDL document instead of being defined in a sepa-
rate file, which makes data-type reuse across several Web Services very difficult.
The exception of this rule occurs when it is known before-hand that data-types
are not going to be reused. In this case, including data-type definitions within
WSDL documents allows constructing self-contained contracts, so it is said that
the contract does not suffer from the anti-pattern.

• Undercover fault information within standard messages [4]: Error information is
returned using output messages rather than Fault messages.

• Redundant data models: A data-type is defined more than once in the same
WSDL document.

20

Table 8: Anti-patterns in the three WSDL data-sets.

Anti-pattern/Data-set Direct Migration
Indirect
Migra-

tion
Assisted Migration

Inappropriate or
lacking comments

Always Never
When the original

transactions use
control couples

Ambiguous names Always Never
When the original

transactions use
control couples

Redundant port-types
When supporting
several protocols

Never Never

Enclosed data model Always Never Never
Undercover fault
information within
standard messages

Always Never Never

Redundant data
models

When two operations
use the same

data-type
Never Never

Low cohesive
operations in the
same port-type

Never Never

When several related
transactions use a

non related
operation, such as

formatting routines

• Low cohesive operations in the same port-type: Occurs in Web Services that
place operations for checking the availability of the service and operations re-
lated to its main functionality into a single port-type. An example of this bad
practice is to include operations such as “isAlive”, “getVersion” and “ping” in a
port-type, though the port-type has been designed for providing operations of a
particular problem domain.

Table 8 summarizes the results of the anti-patterns analysis. When an anti-pattern af-
fected a portion of the WSDL documents in a data-set, we analyzed which is the differ-
ence between these WSDL documents and the rest of the WSDL documents in the same
data-set. Hence, the inner cells present under which circumstances the WSDL docu-
ments were affected by a particular anti-pattern. Since there are anti-patterns whose
detection is inherently more subjective (e.g. “Inappropriate or lacking comments” and
“Ambiguous names”) [22], we performed a peer-review methodology after finishing
their individual measurements to prevent biases.

Achieved results show that the WSDL documents of the Direct Migration data-
set were affected by more anti-patterns than those of the Assisted Migration data-set,
while no anti-pattern affected WSDL documents in the Indirect Migration data-set. The
first two rows describe anti-patterns that impact on services comments and names [8].

21

It is reasonable to expect that these anti-patterns affected the WSDL documents of
the Direct Migration data-set since all information included in them was derived from
code written in CICS/COBOL, which does not offer a standard way to indicate from
which portions and scope of a code existing comments can be extracted and reused.
At the same time, names in CICS/COBOL have associated length restrictions (e.g. up
to 4 characters in some CICS and/or COBOL flavors), names in the resulting WSDL
documents were too short and difficult to be read. In contrast, these anti-patterns af-
fected WSDL documents in Assisted Migration data-set only when the original CI-
CS/COBOL is designed using control couples. This is because properly naming and
commenting this kind of couples is known to be a complex task [27].

The third row describes an anti-pattern that ties abstract service interfaces to con-
crete implementations, hindering black-box reuse [8]. We observed that this anti-
pattern was caused by the tools employed for generating WSDL documents during
the first migration attempt. By default, the employed tool produces redundant port-
types. To avoid this anti-pattern, developers should provide C# service implementation
with rarely used annotations. Likewise, the fourth row describes an anti-pattern that
is generated by many code-first tools, which force data models to be included within
the generated WSDL documents, and could not be avoided within the Direct Migra-
tion WSDL documents. In contrast, neither the Indirect Migration nor the Assisted
Migration data-sets were affected by these anti-patterns.

The anti-pattern described in the fifth row of the table deals with errors being trans-
ferred as part of output messages, which for the Direct Migration data-set resulted from
the original transactions that used the same COMMAREA for returning both output and
error information. In contrast, the WSDL documents of the Indirect Migration data-set
and the Assisted Migration data-set had a proper designed error handling mechanism
based on standard WSDL fault messages.

The anti-pattern described in the sixth row is related to bad data model designs. Re-
dundant data models usually arise from limitations or bad use of the tools employed to
generate WSDL documents. Therefore, this anti-pattern only affected Direct Migration
WSDL documents. Although there were not repeated data-types at the WSDL docu-
ment level, the Assisted Migration data-set had repeated data-types at a global level,
i.e. when taking into account the data-types in all the documents. For instance, the
error type, which consists of a fault code, string (brief description), actor, and descrip-
tion, was repeated in all the Assisted Migration WSDL documents. This is because
this data-type was derived several times from the different sub-systems. Finally, this
did not happen when using indirect migration because the WSDL document designers
had a big picture of the system. We further analyze resulting data-types in the next
section.

The last anti-pattern stands for having no semantically related operations within a
port-type. This anti-pattern did not affected WSDL documents generated through di-
rect migration or indirect migration. The Direct Migration data-set was not affected be-
cause each WSDL document included only one operation, while the Indirect Migration
WSDL documents were specifically designed to group related operations. However,
the assisted migration approach uses an automatic process to select which operations
go to a port-type. In our case study, we found that when several related operations used
the same unrelated routines, such as text-formatting routines, the Assisted Migration

22

Table 9: Data-type definition: Detailed view.

Data Model
characteristics/Data-set

Direct
Migra-

tion

Indirect
Migration

Assisted
Migra-

tion

Defined data-types 182 235 191

Average definitions per data-type 1.29 1.0 1.13

Unique data-types 141 (77%) 235 (100%) 169 (88%)

approach suggested that these routines were also a candidate operation for that service.
This resulted in services that had port-types with several related operation, and one or
two unrelated operations.

Although the assisted migration has a step to eliminate WSDL document anti-
pattern causes, some of the generated WSDL documents were affected by some anti-
patterns. This might be for two reasons, the first one is that the assisted migration is
an iterative process and we only performed one iteration. The second reason is that
the OO refactorings are not enough to remove all the anti-pattern causes. For instance,
the Enclosed data model anti-pattern usually results from the tool used for generating
WSDL documents, when this tool does not support separating the XSD definitions in
another file, regardless how the source code implementing the associated service is
refactored. In both cases, further research is needed to fully assess the capabilities of
the assisted migration.

3.5.3 Data model analysis

Data model management is crucial in data-centric software systems such as the one un-
der study. Therefore, we further analyzed the data-types produced by each migration
approach. Table 9 shows metrics that depict the data-types definitions obtained using
the different migration approaches. This table has a special focus on which percentage
of the data-type are defined more than once, which is undesirable because it hinders
data-type definitions reuse. The first clear difference was the number of data-types
defined. The Direct Migration data-set contained 182 different data-types and 73% of
them were defined only once. Since the associated WSDL documents did not share
data-type definitions, many of the types were duplicated across different WSDL docu-
ments. In contrast, all the 235 unique data-types were defined for the WSDL documents
of the Indirect Migration data-set. Among this set, 104 data-types represented business
objects, including 39 defined as simple types (mostly enumerations) and 65 defined as
complex types, whereas 131 were elements used for compliance with Web Service In-
teroperability standards (WS-I)6. Finally, 196 data-types were defined in the Assisted
Migration data-set. From these 191 data-types, 116 definitions were business objects
(34 simple types + 82 complex types), while 75 definitions were elements used for
WS-I compliance reasons.

The WS-I defines rules for making Web Services interoperable between different
platforms. One of these rules is that message parts always should use XSD elements,

6Basic Profile Version 1.1: http://www.ws-i.org/Profiles/BasicProfile-1.1.html

23

Listing 1: Complex type definition example.
<xsd : complexType name=" Cu i l ">

<xsd : sequence>
<!−− P r e f f i x −−>
<xsd : element name=" p r e f i j o " type=" tns : C u i l P r e f i j o " / >
<!−− I d e n t i t y document −−>
<xsd : element r e f = " tns : Documento " / >
<!−− Cont ro l (v a l i d a t i o n) d i g i t −−>
<xsd : element name=" d i g i t o C o n t r o l " type=" tns : C u i l D i g i t o " / >

</ xsd : sequence>
</ xsd : complexType>

Listing 2: Wrapper element definition example.
<xsd : element name=" c u i l " type=" ns : Cu i l " / >

although according to the Web Service specification message parts might use XSD
elements or XSD types. For example, Listing 1 shows a data-type defined using a
complex type, and the element shown in Listing 2 wraps the complex type.

Regarding to data-type repetitions, the Direct Migration data-set included 182 data-
types definitions of which 133 where unique. This means that 27% of the definitions
were not necessary and could be substituted by other data-type definitions. In contrast,
the Indirect Migration data-set comprised 235 data-types –all of them were unique–
meaning that the data-types were well defined and correctly shared across the associ-
ated WSDL documents. Finally, the Assisted Migration data-set had 191 data-types,
and 169 of them were unique. Therefore, Assisted Migration generated WSDL docu-
ments almost as good as the the ones generated by the indirect migration. To sum up,
the Direct Migration, Indirect Migration and the Assisted Migration data-sets had 1.36,
1, and 1.13 data-type definitions per effective data-type.

The fact that the WSDL documents of the Indirect Migration data-set had fewer
data-type definitions for representing business objects (104) than the others (i.e. 182 for
the Direct Migration WSDL documents and 116 for the Assisted Migration WSDL
documents), indicates a better level of data model reutilization and a proper utilization
of the XSDcomplex and element constructors to be WS-I compliant. However, notice
that the Assisted Migration and the Indirect Migration data-sets almost included the
same number of business objects.

Finally, we studied how the different services belonging to Indirect Migration and
Assisted Migration data-sets reused the data-types. We intentionally left out the ser-
vices generated by the direct migration because they did not share data-types among
individual services. Figure 3 depicts a graph in which services and data-types are
nodes, and each edge represents a use relationship between a service and a data-type.
An evident feature in both graphs is that there was a data-type that is used by most of
the services. This data-type is CUIL, which is the main identifier for a person. The
main difference between the graphs is that the one belonging to the Indirect Migration
is a weakly connected graph without “islands”, while the Assisted Migration graph is

24

Complex data-type definition

Web Service interface (WSDL documents)

The Web Service interface exchanges the data-type. Grey links mean that the WSDL associated with the

service includes just one explicit reference to the data-type, while a black link means that the WSDL document

references two or more occurrences of the data-type.

Keys:

Indirect migration data-type reuse Assisted migration data-type reuse

Figure 3: Data-type reuse comparison.

a disconnected graph. This happened because the assisted migration is not as good
as exhaustively detecting candidate reusable data-types by hand. Despite of this, only
2 services were not connected to the biggest graph, which means that the ability of
assisted migration to detect data-type reuse is fairly good.

4 Future Research Directions
We are at present extending our work in several directions. First, we are refining the
heuristics of our tool so as to make them more accurate. Second, we are planning to
enforce our findings by using other legacy systems. As a starting point, we will use an
RM-COBOL system that comprises 319 programs and 201828 lines of code. Third, we
will investigate whether our ideas hold for legacy systems written in other languages,
such as in C or Java. Lastly, even when we found that using direct migration certainly
has incidence in service quality at the service frontier level, intuitively many WSDL
anti-patterns might be actually introduced by the tools employed to build the corre-
sponding WSDL documents. Indeed, recently, we have shown that there is a statistical
correlation between the WSDL anti-patterns present in a SOA frontier depending on
the code-first WSDL generation tool being employed [20]. We are therefore planning
to extend this analysis to other languages and therefore WSDL construction tools. Our
utmost aim is to determine how much WSDL anti-patterns occurrences are explained
by the approach to migration itself, and how much of them depend on the WSDL tools
used.

Another research direction is taking into account other design service quality met-

25

rics (e.g. [12]) for improving the results of applying the assisted migration. These
metrics might be used for assisting developers to make decisions when they are per-
forming the manual part of the assisted migration. For instance, these metrics can be
used to identify real services from a list of candidate services.

5 Conclusions and Future work
Nowadays, organizations are more and more faced with the need of modernizing their
legacy systems to newer platforms. Particularly, current legacy systems are mostly
written in COBOL, whereas the target paradigm for migrating these systems is com-
monly SOA (Service-Oriented Architecture) due to its widely-recognized benefits in
terms interoperability and reusability. A question that arises is, however, which is the
best way to painlessly moving from a legacy system to exploit the advantages of SOA,
since migration is in general an arduous endeavor for any organization.

In this paper, through a real-world case study involving the migration of an old
CICS/COBOL system to SOA and .NET, we have shown that the traditional “fast and
cheap” approach to migration –i.e. direct migration– produced a not-so-clear SOA
frontier. Therefore, the resulting services were hard to reason about and consume by
client application developers. Alternatively, through an indirect migration approach, a
better SOA frontier in terms of service quality was obtained, at the expense of much
higher development costs. The common ground for comparison was basically an es-
tablished catalog of WSDL anti-patterns [23] that are known to hinder service under-
standability and discoverability. All in all, an interesting finding from this experience
is that there is a relationship between the approach to migration to SOA used and the
number of anti-patterns found in the resulting SOA frontiers.

Motivated by the high costs of indirectly migrating that system by hand, we also
proposed a semi-automatic tool to help development teams in migrating COBOL sys-
tems to SOA. Our tool comprises a number of heuristics that detect bad design and
implementation practices in legacy systems, which in turn serve as a mean to propose
early code refactorings so that the final SOA frontier is free from as much WSDL anti-
patterns occurrences as possible. To evaluate the approach, we used the CICS/COBOL
system mentioned above. In the end, results were encouraging, since migration costs
were dramatically reduced and service quality was very acceptable and close to that of
indirect migration.

References
[1] Saad Alahmari, Ed Zaluska, and David De Roure. A service identification frame-

work for legacy system migration into SOA. In Proceedings of the IEEE In-
ternational Conference on Services Computing, pages 614–617. IEEE Computer
Society, 2010.

[2] A. Almonaies, J.R. Cordy, and T.R. Dean. Legacy system evolution towards
service-oriented architecture. In International Workshop on SOA Migration and
Evolution (SOME), Madrid, Spain, pages 53–62. OFFIS, 2010.

26

[3] Marco Battaglia, Giancarlo Savoia, and John Favaro. Renaissance: A method
to migrate from legacy to immortal software systems. In Proceedings of the 2nd
Euromicro Conference on Software Maintenance and Reengineering (CSMR’98),
CSMR ’98, pages 197–, Washington, DC, USA, 1998. IEEE Computer Society.

[4] Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Jack, and Brad A. Myers. Us-
ability challenges for enterprise service-oriented architecture APIs. In IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC), pages
193–196. IEEE Computer Society, Sept. 2008.

[5] Martin Bichler and Kwei-Jay Lin. Service-Oriented Computing. Computer,
39(3):99–101, 2006.

[6] M. Brian Blake and Michael F. Nowlan. Taming Web Services from the wild.
IEEE Internet Computing, 12(5):62–69, 2008.

[7] Michael L. Brodie and Michael Stonebrake. Darwin: On the incremental mi-
gration of legacy information system. Technical report, Electronics Research
Laboratory, College of Engineering, University of California, Berkeley, 1993.

[8] Marco Crasso, Juan Manuel Rodriguez, Alejandro Zunino, and Marcelo Campo.
Revising WSDL documents: Why and how. IEEE Internet Computing, 14(5):30–
38, 2010.

[9] John Erickson and Keng Siau. Web Service, Service-Oriented Computing,
and Service-Oriented Architecture: Separating hype from reality. Journal of
Database Management, 19(3):42–54, 2008.

[10] Jianchun Fan and Subbarao Kambhampati. A snapshot of public Web Services.
SIGMOD Rec., 34(1):24–32, 2005.

[11] Martin Fowler. Refactorings in Alphabetical Order. http://www.
refactoring.com/catalog/index.html, 1999.

[12] Michael Gebhart and Sebastian Abeck. Metrics for evaluating service designs
based on soaml. International Journal on Advances in Software, 4:61–75, 2011.

[13] Anca Daniela Ionita, Alessandra Catapano, Stelian Giuroiu, and Monica Florea.
Service oriented system for business cooperation. In Proceedings of the 2nd in-
ternational workshop on Systems development in SOA environments, SDSOA ’08,
pages 13–18, New York, NY, USA, 2008. ACM.

[14] Richard C. Leinecker. Com+ Unleashed. Sams, 2000.

[15] G. Lewis, E. Morris, S. Simanta, and D. Smith. Service Orientation and Systems
of Systems. Software, IEEE, 28(1):58 –63, jan.-feb. 2011.

[16] Grace Lewis, Edwin Morris, and Dennis Smith. Migration of legacy components
to service-oriented architectures. Journal of Software Technology, 8:14–23, 2005.

27

[17] Shing-Han Li, Shi-Ming Huang, David C. Yen, and Cheng-Chun Chang. Mi-
grating legacy information systems to Web Services architecture. Journal of
Database Management, 18(4):1–25, 2007.

[18] Marin Litoiu. Migrating to Web Services: a performance engineering approach.
Journal of Software Maintenance and Evolution: Research and Practice, 16(1-
2):51–70, 2004.

[19] Cristian Mateos, Marco Crasso, Alejandro Zunino, and Marcelo Campo. Sep-
aration of concerns in service-oriented applications based on pervasive design
patterns. In Web Technology Track (WT) - 25th ACM Symposium on Applied
Computing (SAC ’10), Sierre, Switzerland, pages 2509–2513. ACM Press, 2010.

[20] José Luis Ordiales Coscia, Cristian Mateos, Marco Crasso, and Alejandro Zunino.
Avoiding wsdl bad practices in code-first web services. In Proceedings of the 12th
Argentine Symposium on Software Engineering (ASSE2011) - 40th JAIIO, pages
1–12, 2011.

[21] Juan M. Rodriguez, M. Crasso, C. Mateos, A. Zunino, and M. Campo. The
EasySOC project: A rich catalog of best practices for developing Web Service
applications. In Jornadas Chilenas de Computación (JCC) - INFONOR 2010,
Antofagasta, Chile, pages 33–42. SCC (Sociedad Chilena de la Ciencia de la
Computación), 2010.

[22] Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo.
Automatically detecting opportunities for Web Service descriptions improve-
ment. In 10th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society
(I3E 2010), Ciudad Autónoma de Buenos Aires, Argentina, volume 431, pages
139–150. Springer Boston, 2010.

[23] Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo.
Improving Web Service descriptions for effective service discovery. Science of
Computer Programming, 75(11):1001–1021, 2010.

[24] Harry Sneed. A pilot project for migrating COBOL code to Web Services. Inter-
national Journal on Software Tools for Technology Transfer, 11:441–451, 2009.
10.1007/s10009-009-0128-z.

[25] Harry Sneed. Measuring Web Service interfaces. In 12th IEEE International
Symposium on Web Systems Evolution, pages 111 –115, sept. 2010.

[26] Eleni Stroulia and Yiqiao Wang. Structural and semantic matching for assess-
ing Web Service similarity. International Journal of Cooperative Information
Systems, 14(4):407–438, 2005.

[27] Edward Yourdon and Larry L. Constantine. Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1979.

28

[28] C. Zillmann, A. Winter, A. Herget, W. Teppe, M. Theurer, A. Fuhr, T. Horn,
V. Riediger, U. Erdmenger, U. Kaiser, D. Uhlig, and Y. Zimmermann. The soamig
process model in industrial applications. In Proceedings of the 2011 15th Euro-
pean Conference on Software Maintenance and Reengineering, CSMR ’11, pages
339–342, Washington, DC, USA, 2011. IEEE Computer Society.

29

