
Siddhartha Bhattacharyya
RCC Institute of Information Technology, India

Paramartha Dutta
Visva Bharati University, India

Handbook of Research on
Computational Intelligence
for Engineering, Science,
and Business

Volume I

Handbook of research on computational intelligence for engineering, science, and business / Siddhartha Bhattacharyya and
Paramartha Dutta, editors.
 pages cm
 Includes bibliographical references and index.
 Summary: “This book discusses the computation intelligence approaches, initiatives and applications in the engineering,
science and business fields, highlighting that computational intelligence as no longer limited to computing-related disci-
plines and can be applied to any effort which handles complex and meaningful information”-- Provided by publisher.
 ISBN 978-1-4666-2518-1 (hardcover) -- ISBN (invalid) 978-1-4666-2519-8 (ebook) -- ISBN (invalid) 978-1-4666-2520-4
(print & perpetual access) 1. Computational intelligence. 2. Content analysis (Communication) I. Bhattacharyya,
Siddhartha, 1975- II. Dutta, Paramartha.
 Q342.H36 2013
 006.3--dc23
 2012027413

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Managing Director: Lindsay Johnston
Editorial Director: Joel Gamon
Book Production Manager: Jennifer Romanchak
Publishing Systems Analyst: Adrienne Freeland
Development Editor: Austin DeMarco
Assistant Acquisitions Editor: Kayla Wolfe
Typesetter: Lisandro Gonzalez
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2013 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

410

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

Elina Pacini
Institute for Information and Communication Technologies, Universidad Nacional de Cuyo,

Argentina

Cristian Mateos
Instituto Superior de Ingenieria de Software, Consejo Nacional de Investigaciones Cientificas y

Tecnicas, Argentina

Carlos García Garino
Institute for Information and Communication Technologies, Universidad Nacional de Cuyo,

Argentina

Schedulers Based on Ant
Colony Optimization for

Parameter Sweep Experiments
in Distributed Environments

ABSTRACT

Scientists and engineers are more and more faced to the need of computational power to satisfy the ever-
increasing resource intensive nature of their experiments. An example of these experiments is Parameter
Sweep Experiments (PSE). PSEs involve many independent jobs, since the experiments are executed under
multiple initial configurations (input parameter values) several times. In recent years, technologies such
as Grid Computing and Cloud Computing have been used for running such experiments. However, for
PSEs to be executed efficiently, it is necessary to develop effective scheduling strategies to allocate jobs
to machines and reduce the associated processing times. Broadly, the job scheduling problem is known
to be NP-complete, and thus many variants based on approximation techniques have been developed. In
this work, the authors conducted a survey of different scheduling algorithms based on Swarm Intelligence
(SI), and more precisely Ant Colony Optimization (ACO), which is the most popular SI technique, to
solve the problem of job scheduling with PSEs on different distributed computing environments.

DOI: 10.4018/978-1-4666-2518-1.ch016

411

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

INTRODUCTION

Parameter Sweep Experiments, or PSEs for short,
is a very popular way of conducting simulation-
based experiments among scientists and engineers
through which the same application code is run
several times with different input parameters
resulting in different outputs (Youn and Kaiser,
2010). Representative examples of PSEs are
sensitivity studies of results in terms of defined
parameter changes like is the case of imperfec-
tions in the simulation of simple tension test, or
the study of buckling of imperfect columns.

From a purely software perspective, most PSEs
are cluster friendly in the sense that individual
inputs of an experiment can be handled by inde-
pendent jobs. Therefore, using a software platform
such as Condor (Thain et al., 2005), which is able
to exploit the distributed nature of a computer
cluster, allows these jobs to be run in parallel.
In this way, not only PSEs execute faster, but
also experiments more computing intensive can
be computed, and hence more complex simula-
tions can be performed. The same idea has been
systematically applied to execute PSEs on Grids
(Foster and Kesselman, 2003), which are basically
infrastructures that connect clusters via wide-area
connections to increase computational power. To
this end, software platforms designed to exploit
Grids provide the illusion of the existence of a
large supercomputer, which in turn virtualizes
and combines the hardware capabilities of many
much less powerful, geographically-dispersed
machines to run resource intensive applications
(Coveney et al., 2005).

On the downside, for users not proficient in
distributed technologies, manually configuring
PSEs is tedious, time-consuming and error-prone.
As a consequence, users typically waste precious
time that could be instead invested into analyz-
ing results. The availability of elaborated GUIs
-especially for Grids- that help in automating an
experimentation process has in part mitigated this

problem. However, the highly complex nature
of today’s experiments and thus their associated
computational cost greatly surpasses the time
savings that can be delivered by this automation.

A recent distributed computing paradigm that
is rapidly gaining momentum is Cloud Computing
(Buyya et al., 2009), which bases on the idea of
providing an on demand computing infrastructure
to end users. Typically, users exploit Clouds by
requesting from them one or more machine im-
ages, which are virtual machines running a de-
sired operating system on top of several physical
machines (e.g. a datacenter). Interaction with a
Cloud is performed by using Cloud services, which
define the functional capabilities of a Cloud, i.e.
machine image management, access to software/
data, security, and so on.

Due to the fact that PSEs perform the process-
ing of a lot of jobs, it is necessary to address how
they will be executed in distributed computing
environments, which is a complex endeavor. For
jobs to be properly executed, it is necessary to
allocate them to different resources reasonably
and optimally. This problem is known as job
scheduling and is an NP-complete problem, which
aims to minimize the overall execution time of
all jobs. Job scheduling is one of the bottlenecks
in distributed computing.

In the last ten years or so, Swarm Intelligence
has received increasing attention in the research
community. Swarm Intelligence refers to the col-
lective behavior that emerges from a swarm of
social insects (Bonabeau et al., 1999). Social insect
colonies solve complex problems collectively by
intelligent methods. These problems are beyond
the capabilities of each individual insect, and the
cooperation among them is largely self-organized
without any supervision. Through studying social
insect colonies behaviors such as ant colonies,
researchers have proposed some algorithms or
theories for combinational optimal problems.
Moreover, job scheduling in Grids or Clouds is
also a combinational optimal problem.

412

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Motivated by these facts, we conducted a
literature review of job scheduling techniques
based on Ant Colony Optimization (Dorigo, 1992)
algorithms. The inspiring source of ACO is the
foraging behavior of real ants. ACO is one of
the most popular optimization techniques in the
area of Swarm Intelligence (García Martínez et
al., 2007; Huang and Wang, 2011; Chandra and
Baskaran, 2012) and the most popular optimization
technique among bioinspired techniques. ACO has
been extensively studied and deployed for solving
problems as varied as Vehicular Routing Problem
(VRP) (Rizzoli et al., 2004), Single Machine Total
Weighted Tardiness Problem (SMTWTP) (Den
Besten et al., 2000), Graph Colouring Problem
(Vesel and Zerovnik, 2000), and so on. These facts
have been attracting the attention of researchers
studying distributed scheduling.

The rest of the work is organized as follows.
The next Section provides more details on the
concept of Parameter Sweep Experiments. Section
“Distributed Computing Infrastructures” describes
the two distributed environments commonly used
today, namely Grids and Clouds. Later, Section
“Swarm Intelligence” explains the concepts un-
derpinning Swarm Intelligence and Ant Colony
Optimization. Section “Related work of job sched-
uling based on ACO” presents related works of
job scheduling based on ACO. Section “Analysis
of ACO-based Scheduling Approaches” present
a uniform and organized view of the surveyed
works. Finally, Section “Conclusions and Future
Research Directions” concludes this work and
describes prospective future works.

BACKGROUND

Parameter Sweep Experiments (PSEs) is an experi-
mental simulation-based methodology involving
running the same application code several times
with different input parameters to derive differ-
ent outputs (Youn and Kaiser, 2010). Running
PSEs requires managing many independent jobs

(Samples et al., 2005), since the experiments are
executed under multiple initial configurations
(input parameter values) a large number of times,
to locate a particular point in the parameter space
that satisfies certain user criteria. In addition, dif-
ferent PSEs have different number of parameters.

Scientists involved in this type of experiments
need a computing environment that delivers large
amounts of computational power over a long pe-
riod of time. In general terms, such an environment
is called a High Throughput Computing (HTC)
environment. In HTC, jobs are dispatched to run
independently on multiple computers at the same
time. Interestingly, PSEs find their application in
diverse scientific areas such as Bioinformatics
(Sun et al., 2004), Earth Sciences (Gulamali et
al., 2004), High-Energy Physics (Basney et al.,
2000), Molecular Science (Wozniak et al., 2005)
and even Social Sciences (Axelrod, 1997). How-
ever, to deal with these problems, it is necessary
large amounts of computational power.

A concrete example of PSE is the one presented
by Careglio et al. (Careglio et al., 2010), which
consists in analyzing the influence of size and type
of geometric imperfections in the response of a
simple tensile test on steel bars subject to large
deformations. To conduct the study, the authors
numerically simulate the test by varying some
parameters of interest, namely using different
sizes and types of geometric imperfections. By
varying these parameters different study cases
were obtained, which was necessary to analyze
and run on different machines in parallel.

Due to the fact that PSEs involve three broad
activities, namely the execution of a potentially
large computation, the grouping of the results,
and their interpretation afterwards, PSEs can be
carried out by exploiting computational workflows
(Taylor et al., 2006). Therefore, PSEs, which are
embarrassingly parallel problems, are well suited
to HTC environments where large numbers of
resources are available. To this end, PSEs require
a suitable partition of the input data where each
partition is assigned to a different job (or sub

413

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

workflow) (Berglund et al., 2009; Ma and Buyya,
2005). Even though PSEs can be done without
workflows, data management in the client is sim-
plified when the parameter sweep study can be
treated as several sub workflows. This increased
abstraction is beneficial both from a usability point
of view (i.e. results interpretation becomes faster)
and of course from a performance standpoint.

When designing PSEs, there are several issues
to tackle. On one hand, it is necessary to generate
the set of all possible combinations of input param-
eters. This is a time-consuming task, which should
be automated. However, it is not straightforward
to provide a general solution, since each problem
has a different number of parameters and each
of them has its own variation interval. Another
issue, which is in part a consequence of the first
issue, relates to scheduling PSEs on distributed
environments, which is a complex activity. For
this reason, it is necessary to develop efficient
scheduling strategies to appropriately allocate the
workload and reduce the associated computation
time. The term scheduling refers to the way jobs
are assigned to run on the available CPUs, since
there are typically many more jobs running than
available CPUs. This assignment is carried out
by software known as a scheduler and dispatcher.
The demand for scheduling is to achieve high per-
formance computing. The scheduling problem is
defined NP-complete problem (Woeginger, 2003)
and it is not trivial.

In PSEs scheduling problems, in order to
minimize the completion time of jobs (makespan)
it is essential a correct assignment of jobs so that
computer loads and communication overheads
are well balanced (load balancing). The term
“makespan” means to find a sequence of jobs
that minimizes the finishing time of the last job
in the system, or in other words the maximum
completion time of all jobs. A formal definition
of makespan is as follows: given n jobs with
processing times {p1, p2, ... pn} and m machines
with speeds {s1, s2, …, sm} we want to assign
the jobs to machines to minimize the maximum

finish time. On the other hand, load balancing
(Yawei and Zhiling, 2004) refers to the technique
that tries to distribute work load between several
computer resources (CPUs, network interfaces,
hard drives, and other resources) in order to get
an optimal resource utilization, throughput, or
response. A load balancing mechanism aims to
equally distribute the load on each computing
node, maximizing their utilization and minimiz-
ing the total job execution time. To achieve these
goals, any load balancing mechanism should be
fair in distributing the load across the computing
nodes. Note that these two concepts are mutually
independent, and in fact represent a trade-off,
since a good load balancing does not always lead
to a minimization of completion time of all jobs
and viceversa.

Distributed Computing
Infrastructures

Years ago, Grid Computing (Foster and Kessel-
man, 2003) and more recently Cloud Computing
technologies (Buyya et al., 2009) have been in-
creasingly used for running parameter sweep ap-
plications. PSEs are well suited for these environ-
ments since PSEs are inherently parallel problems
with no or little data transfer between nodes during
computations. Since many applications require
a great need for calculation, these applications
have been initially targeted at dedicated High
Throughput Computing (HTC) infrastructures
such as clusters or pools of networked machines,
managed by some software or platform such as
Condor (Thain et al., 2005).

Then, with the advent of Grid Computing new
opportunities were available to scientists, since
Grids offered the computational power required
to perform even larger experiments. Grid Com-
puting introduced new facilities such as dynamic
service discovery, the ability of relying on a large
number of resources belonging to different ad-
ministrative domains, and finding the best set of
machines that meet an application’s requirements.

414

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

The use of Grid Computing in scientific applica-
tions (Coveney et al., 2005) has been successful
in many international projects and has led to
the establishment of world-wide infrastructures
available for computational science (Pordes et al.,
2007; Gagliardi and Begin, 2005; Catlett, 2005).

Cloud Computing is a natural evolution of the
widespread adoption of virtualization, service-
oriented architectures, and utility computing
(Buyya et al., 2009). Basically, technological
details are abstracted from end-users, who no
longer have need for expertise in, or control over,
the technology infrastructure “in the cloud” that
supports them. Cloud Computing describes a new
supplement, consumption, and delivery model for
IT services based on Internet protocols, which
typically involves provisioning of dynamically
scalable and often virtualized resources.

Due to the fact that Grid Computing and
Cloud Computing are nowadays the most used
Infrastructures to execute scientific applications,
an overview of each one is provided next.

Grid Computing

The term “Grid Computing” originated in the early
1990s as a metaphor of making computer power
as easy to access an electric power Grid (Foster
and Kesselman, 2003). Grid Computing can be
defined as a type of parallel and distributed system
that enables the sharing, selection, and aggregation
of geographically distributed autonomous and
heterogeneous resources dynamically at runtime
depending on their availability, capability, perfor-
mance, cost, and user’s Quality-of-Service (QoS)
requirements (Baker et al., 2002).

A Grid, or the kind of distributed infrastructure
that is built by following the Grid Computing
paradigm, is a form of distributed computing
whereby a “super virtual computer” is composed
of many networked, loosely coupled computers
acting together to execute very large jobs. As such,
a Grid is a shared environment implemented via
the deployment of a persistent, standards-based

service infrastructure that supports the creation
of, and resource sharing within, distributed
communities. Resources can be computers, stor-
age space, instruments, software applications,
network interfaces and data, all connected to a
network (private, public or the Internet) through
a middleware software layer that provides basic
services for security, monitoring, resource man-
agement, and so forth. Resources owned by various
administrative organizations are shared under lo-
cally defined policies that specify what is shared,
who is allowed to access what, and under what
conditions (Foster and Iamnitchi, 2003). Basi-
cally, the problem that underlies the Grid concept
is achieving coordinated resource sharing and
problem solving in dynamic, multi-institutional
Virtual Organizations (VO) (Foster et al., 2001)
where each VO can consist of either physically
distributed institutions or logically related proj-
ects/groups. The goal of such an infrastructure is
to enable federated resource sharing in dynamic,
distributed environments.

Grid Computing has been applied to compu-
tationally intensive scientific, mathematical, and
academic problems, and it is used in commercial
enterprises for such diverse applications as drug
discovery, economic forecasting, seismic analysis,
and back office data processing in support for
e-commerce and Web services. Grids provide a
means for offering information technology as a
utility for commercial and non-commercial clients,
with those clients paying only for what they use,
as with electricity or water.

Despite the widespread use of Grid technolo-
gies in scientific computing, as demonstrated by
the large amount of projects served by Grid
Computing (Vecchiola et al., 2009), some issues
still make the access to this technology not easy
for disciplinary or domain users. For example,
operationally, some Grids are bureaucratic, since
research groups have to submit a proposal describ-
ing the type of research they want to carry out
prior to executing their experiments.

415

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Other usage-related issues involve technical
hurdles. In most cases scientific Grids feature a
prepackaged environment in which applications
will be executed. Then, specific tools and APIs
have to be used, and there could be limitations on
the hosting operating systems or on the services
offered by the runtime environment. On the other
hand, although Grid Computing favors dynamic
resource discovery and provision of a wide vari-
ety of runtime environments for applications, in
practice, a limited set of options are available for
scientists, which are not in addition elastic enough
to cover their needs. An illustrative example
involves the use of specific software that could
not be available in the runtime environment were
applications are executed. In general, applications
that run on scientific Grids are implemented as
bag of jobs applications, workflows, and MPI
(Message Passing Interface) (Gropp et al., 1994)
parallel jobs. Some scientific experiments could
not fit into these models and therefore have to be
reorganized or redesigned to exploit a particular
scientific Grid.

Cloud Computing

All in all, while the aforementioned bureaucratic
issues can be a minor problem, the technical ones
could constitute a fundamental obstacle for next
generation scientific computing. Cloud Comput-
ing (Buyya et al., 2009), the current emerging
trend in delivering IT services, has been recently
proposed to address the aforementioned problems.
By means of virtualization technologies, Cloud
Computing offers to end users a variety of services
covering the entire computing stack, from the
hardware to the application level, by charging them
on a pay per use basis. This makes the spectrum
of options available to scientists, and particularly
PSEs users, wide enough to cover any specific need
from their research. Another important feature,
from which scientists can benefit, is the ability
to scale up and down the computing infrastruc-

ture according to the application requirements
and the budget of users. By using Cloud-based
technologies scientists can have easy access to
large distributed infrastructures and are allowed
to completely customize their execution environ-
ment, thus deploying the most appropriate setup
for their experiments. Moreover, by renting the
infrastructure on a pay per use basis, they can have
immediate access to required resources without
any capacity planning and they are free to release
resources when these latter are no longer needed.

As suggested, central to Cloud Computing is
the concept of virtualization, i.e. the capability of
a software system of emulating various operating
systems. By means of this support, scientists can
exploit Clouds by requesting from them machine
images, or virtual machines that emulate any oper-
ating system on top of several physical machines,
which in turn run host operating systems. Usually,
Clouds are established using the machines of a
datacenter for executing user applications while
they are idle.

Interaction with a Cloud environment is per-
formed via Cloud services (Buyya et al., 2009),
which define the functional capabilities of a
Cloud, i.e. machine image management, access
to software/data, security, and so forth. Cloud
services are commonly exposed to the outer world
via Web Services (Hao et al., 2010), i.e. reusable
software components that can be remotely invoked
by applications implemented in any programming
language. By using these services, a user (scien-
tific) application can allocate machine images,
upload input data, execute, and download output
(result) data for further analysis. Finally, to offer
on demand, shared access to their underlying
physical resources, Clouds have the ability to
dynamically allocate and deallocate machines
images. Besides, and also important, Clouds can
coallocate N machines images on M physical
machines, with N ≥ M, thus concurrent user-wide
resource sharing is ensured. These relationships
are depicted in Figure 1.

416

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

In summary, a Cloud gives users the illusion
of a single, powerful supercomputer in which
complex applications can be run. Besides, the
software stack of the infrastructure can be fully
adapted and configured according to users’ needs.
This provides excellent opportunities for scientists
and engineers to run applications that demand by
nature a huge amount of computational resources
-i.e. CPU cycles, memory and storage- and rely
on specific software libraries.

With everything mentioned so far, there is
a great consensus on the fact that from the per-
spective of domain scientists the complexity of
traditional distributed and parallel computing
environments such as clusters and particularly
Grids should be hidden, so that domain scientists
can focus on their main concern, which is per-
forming their experiments. As a result, the use of
Cloud Computing infrastructures is a good choice
for running scientific applications. Precisely, for
parametric studies, or scientific applications in
general, the value of Cloud Computing as a tool
to execute complex applications has been already
recognized within the scientific community (Wang
et al., 2008).

While Cloud Computing helps scientific users
to run complex applications, job management is
a key concern in Cloud Computing that must be
addressed. Broadly, job scheduling is a mecha-
nism that maps jobs to appropriate resources to
execute, and the delivered efficiency will directly
affect the performance of the whole Cloud Com-
puting environment. Particularly, the scheduling
algorithms for distributed systems have the goal
of dividing a single computation into several jobs
and submitting these latter to resources, while
maximizing resource utilization and minimizing
the total execution time (makespan) of all jobs.
As job scheduling is an NP-complete optimization
problem, several heuristic algorithms have been
proposed in the literature.

Moreover, as artificial life techniques have
shown to be useful in optimization problems, they
are good candidates to optimize in principle load
balancing and minimize the total execution time
(makespan) of jobs in PSE environments. The
advantage of these techniques derives from their
ability to explore solutions in large search spaces
in a very efficient way.

Figure 1. Cloud computing: High-level view

417

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Swarm intelligence

As suggested earlier, Swarm Intelligence (SI)
techniques are increasingly used to solve opti-
mization problems. The expression Swarm Intel-
ligence was introduced by Gerardo Beni and Jing
Wang in 1989 in the context of cellular robotic
systems (Beni and Wang, 1989) and concerns a
type of problem solving skill inspired by nature.
Swarm Intelligence (Bonabeau et al., 1999) is
the discipline that deals with natural and artificial
systems composed of many individuals that co-
ordinate themselves using decentralized control
and self-organization. In particular, the discipline
focuses on the collective behaviors that result
from the local interactions of the individuals with
each other and with their environment. Examples
of systems studied by SI are ants colonies, fish
schools, flocks of birds, and herds of land ani-
mals, where the whole group of agents perform
a desired chore (i.e. feeding), which may not be
made individually. Figure 2 shows some examples
of natural systems which are inspired by Swarm
Intelligence. For example, an individual ant is
relatively unintelligent, but when they are part of
a colony, complex group behavior emerges from
the interactions of individuals -such as searching
for food- who exhibit simple behaviors by them-
selves. On the other hand, a fish makes dynamic
decisions to swim in one direction or another. At
beginning, a fish swims behind another perform-
ing various maneuvers, but only up to a certain
point. If the first fish swims right passing food,

the other members of the school would listen to
other instincts instead.

Swarm intelligence is then the emergent col-
lective intelligence of groups of simple autono-
mous agents, where an autonomous agent is a
subsystem that interacts with its environment,
which probably consists of other agents, but acts
relatively independently from all other agents.
The autonomous agent does not follow commands
from a leader, or some global plan. For example,
for a bird to participate in a flock, it only adjusts
its movements to coordinate with the movements
of its flock mates, typically its neighbors that are
close to the bird in the flock. A bird in a flock
simply tries to stay close to its neighbors, but
avoid collisions with them. No bird takes the
leadership role since there is no lead bird.

Any bird can fly in the front, center and back of
the “swarm”. Swarm behavior helps birds taking
advantage of several things including protection
from predators (especially for birds in the middle
of the flock), and searching for food (essentially
each bird is exploiting the eyes of every other
bird). The essential principle in SI is cooperation
and exchange of knowledge between individual
information units.

An SI system has the following properties:

• It is composed of many individuals;
• The individuals are relatively homoge-

neous, i.e. they are either all identical or
they belong to a few typologies;

Figure 2. Examples of natural systems

418

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

• The interactions among the individuals
are based on simple behavioral rules that
exploit only local information that the
individuals exchange directly or via the
environment;

• The overall behavior of the system results
from the interactions of individuals with
each other and with their environment, i.e.
the group behavior self-organizes.

The characterizing property of a SI system is its
ability to act in a coordinated way without the pres-
ence of a coordinator or of an external controller.
Most often, the behavior of each individual of the
swarm is described in probabilistic terms, as each
individual has a stochastic behavior that depends
on his local perception of the neighborhood.

The following Section explains Ant Colony
Optimization (ACO), an SI technique that is
widely used in job scheduling problems, and will
be the basis for analyzing the state of the art of
the subject in this work.

Ant Colony Optimization

Ant Colony Optimization algorithm (ACO), in-
troduced by Marco Dorigo in 1992 in his doctoral
thesis (Dorigo, 1992), is a probabilistic technique
for solving computational problems which can be
reduced to finding shortest paths through graphs.
ACO was inspired by the observation of real ant
colonies. An interesting behavior is how ants can
find the shortest paths between food sources and
their nest.

In the real world, ants (initially) wander ran-
domly, and upon finding food return to their colony
while laying down pheromone trails. If other ants
find such a path, they are likely not to keep trav-
eling at random, but to instead follow the trail,
returning and reinforcing it if they eventually find
food. Thus, when one ant finds a good (i.e. short)
path from the colony to a food source, other ants
are more likely to follow that path, and positive
feedback eventually leaves all the ants following

a single path. The idea of ACO is to mimic this
behavior with simulated ants walking around the
graph representing the problem to solve.

Over time, however, pheromone trails start to
evaporate, thus reducing their attractive strength.
The more the time it takes for an ant to travel down
the path and back again, the less the frequency
with which pheromone trails are reinforced. A short
path, by comparison, gets marched over faster,
and thus the pheromone density remains high as
it is laid on the path as fast as it can evaporate.

From the algorithmic point of view, the phero-
mone evaporation process has also the advantage
of avoiding the convergence to a locally optimal
solution. If there were no evaporation at all, the
paths chosen by the first ants would tend to be
excessively attractive to the following ones. In that
case, the exploration of the solution space would
be constrained. Thus, when one ant finds a good
path from the colony to a food source, other ants
are more likely to follow that path, and positive
feedback eventually leaves all the ants following
a single path.

Figure 3 shows two possible paths from the nest
to the food source, but one of them is longer than
the other one. Ants will start moving randomly to
explore the ground and choose one of two ways
as can be seen in (a). The ants taking the shorter
path will reach the food source before the others
and leave behind them a trail of pheromones. After
reaching the food, the ants will turn back and try to
find the nest. The ants that go and return faster will
strengthen more quickly the pheromone amount
in the shorter path, as shown in (b). The ants who
took the long way will have more probability
to come back using the shortest way, and after
some time, they will converge toward using it.
Consequently, the ants will find the shortest path
by themselves, without having a global view of
the ground. After a certain time, almost all ants
will choose the left path as shown in (c).

Precisely, the above behavior of real ants has
inspired ACO, which is a population-based ap-
proach that has been in turn successfully applied

419

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

to many NP-hard optimization problems (Dorigo
and Caro, 1999). One of its main ideas is exploit-
ing the indirect communication among the indi-
viduals of an ant colony. Intuitively, this mecha-
nism is based on an analogy with the
abovementioned trails of pheromone which real
ants use for communication. ACO employs
pheromone trails as a kind of distributed nu-
merical information which is modified by ants to
reflect their accumulated experience while solv-
ing a particular problem.

When applied to optimization problems, ACO
uses a colony of artificial ants that behave as coop-
erative agents in a solution space were they are al-
lowed to search and reinforce pathways (solutions)
in order to find the optimal ones. A solution that
satisfies the problem constraint is feasible. After
initialization of pheromone trails, ants construct
feasible solutions, starting from random nodes,
and then pheromone trails are updated. A node
is an abstraction for the location of an ant, i.e. a
nest or a food source. At each execution step ants
compute a set of feasible moves and select the
best one (according to some probabilistic rules)
to carry out the rest of the tour. The transition
probability is based on the heuristic information
and pheromone trail level of the move. The higher
the value of the pheromone and the heuristic in-

formation, the more profitable it is to select this
move and resume the search. In the beginning, the
initial pheromone level is set to a small positive
constant value 0 and then ants update this value
after completing the construction stage. All ACO
algorithms adapt a specific algorithm scheme as
shown in Figure 4.

After initializing the pheromone trails and
control parameters, a main loop is repeated until
the stopping criterion is reached. The stopping
criterion can be for example a certain number of
iterations or a given time limit without improving
the overall result. In the main loop the ants con-

Figure 3. Adaptive behavior of ants (adapted from Ciruela Martín, 2008)

Figure 4. Pseudo-code of a basic ACO algorithm

420

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

struct feasible solutions and update the associ-
ated pheromone trails. More precisely, partial
problem solutions are seen as nodes: each ant
starts from a random node and moves from a node
i to another node j of the partial solution. At each
step, the ant k computes a set of feasible solutions
to its current node and moves to one of these
expansions, according to a probability distribution.
For an ant k the probability pkij to move from a
node i to a node j depends on the combination of
two values:

p
q allowed

if j allowed

p otherwise

ij
k ij ij

k iq iq
k

ij
k

=
∑

∈

=

τ η

τ η.

0










where:

• ηij is the attractiveness of the move as com-
puted by some heuristic information indi-
cating a prior desirability of that move;

• τij is the pheromone trail level of the move,
indicating how profitable it has been in the
past to make that particular move (it repre-
sents therefore a posterior indication of the
desirability of that move);

• allowedk is the set of remaining feasible
nodes.

Thus, the higher the pheromone value and
the heuristic information, the more profitable it
is to include state j in the partial solution. The
initial pheromone level is set to τ0, which is a
small positive constant. In nature there is not
any pheromone on the ground at the beginning,
or the initial pheromone is τ0 = 0. If in the ACO
algorithm the initial pheromone is zero, then the
probability to chose next state will be pkij = 0 and
the search process will stop from the beginning.
For this reason, the initial pheromone must be a
positive numeric value.

Furthermore, the pheromone level of the ele-
ments of the solutions is changed by applying the
following updating rule:

τij ← ρ.τij + Δτij

where the inequality 0 < ρ < 1 models evaporation
and Δτij is an additional pheromone and it is differ-
ent for each implementation of ACO algorithms.
Normally, the quantity of the added pheromone
depends on the quality of the solution.

In practice, to optimize job scheduling prob-
lems, the ACO algorithm has the advantage that
allows the use of graphical representations, where
a graph design is used to identify the problem and
connect the corresponding arcs of each job to each
submitting physical machine. Here, each job can
be represented by an ant, i.e. by an agent. Agents
cooperatively search the less-loaded machines
with sufficient available resources and transfer
the jobs to these machines.

RELATED WORK OF JOB
SCHEDULING BASED ON ACO

In the last ten years, Swarm Intelligence has
received increasing attention in the research
community. Due their fast convergence rate,
global optimization ability and robustness, SI
algorithms were applied to approximate classical
NP-complete problems such as Traveling Sales-
man Problem (TSP) (Bianchi et al., 2002; Kuo
et al., 2010), Job Shop Problem (JSP) (Heinonen
and Pettersson, 2007; Huang and Liao, 2008) and
other optimization problems (Yun-Chia and Smith,
2004; Baterina and Oppus, 2010).

Within the realm of combinatorial optimiza-
tion, SI finds its niche in routing applications
and in specialized job scheduling activities. Not
surprisingly, these two applications correlate very
well with two fundamental traits of SI, i.e. positive

421

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

feedback or reinforcing good solutions present in
the system, and division of labor. Moreover, social
insect colonies can solve complex problems col-
lectively by distributed and intelligent methods.
These problems are beyond the capabilities of each
individual insect, and the cooperation among them
is largely self-organized. As a result, the collec-
tive behavior of insects has become a model for
tackling job scheduling problems.

Particularly, in recent years, several research-
ers have proposed algorithms based on ACO for
solving job scheduling problems in distributed
environments, particularly Grids and Clouds. After
analyzing the existing literature, we have classified
the relevant works into four main groups accord-
ing to the objectives (or variables) the associated
scheduling algorithms are designed to optimize:

• Approaches minimizing makespan
• Approaches maximizing load balancing
• Approaches minimizing makespan and

maximizing load balancing
• Approaches minimizing makespan and

minimizing monetary cost
• Approaches minimizing makespan, maxi-

mizing load balancing and minimizing
monetary cost

In next subsections, the approaches for job
scheduling based on ACO falling in these cat-
egories are discussed. Within each category, ap-
proaches are referenced by using authors’ names.
Lastly, the fourth and fifth categories represent
scheduling algorithms that assume distributed
environments which charge users for the computa-
tional resources (typically CPU time and network
usage) they spend when running their applications.

Approaches Minimizing Makespan

Lorpunmanee et al.

In (Lorpunmanee et al., 2007) the authors have
proposed an ACO algorithm for dynamic job

scheduling in Grid environments where the avail-
ability of resources is constantly changing and jobs
arrive to be executed at different times. Generally,
jobs are sent to a Grid at different time points,
and each job has different lengths and consumes
different resources. Therefore, job processing is
performed at different execution times.

The proposed ACO algorithm takes into
account the requirements of each job, which
are independent of each other. Moreover, each
processor execute only one job per unit time, is
to say that once a processor finishes to execute
a job can process a new job. The motivation of
this paper was to develop an ACO algorithm that
can produce an optimal selection of resources and
minimize efficiently and effectively the total tardi-
ness time (makespan), i.e. to improve the overall
performance of a set of jobs within a dynamic Grid.

In the algorithm, the authors have defined
the completion time (CT) as the wall clock time
time, which machine completes for each job.
The completion time of job jth in a machine i is
defined as Cij = aj + rj + ETCij, where aj is the
arrival time of the job j, rj is the release time of
the job j, and ETCij is defined as the amount of
time that the job j is processed in the machine i,
and the machine has no load to the assigned job.
Moreover, the algorithm includes four steps,
namely pheromone initialization, state transition
rule, local update rule and global update rule.

Initially, a set of artificial ants are created.
Each ant starts with one unscheduled job in one
machine and then the ant builds a job tour in
machines until a feasible solution is constructed.
To do this, the ant makes the best possible move
as marked by pheromone trails and the heuristic
information. To do this ants use the state transi-
tion rule. The heuristic is used to determine the
desirability of to move the job j from machine i
to machine m. This is inversely proportional to
the completion time of the job j that has been as-
signed on machine m, or ηj(i, m) = 1=(aj + rj +
Pm,j), where P is the processing time of the job j
on the machine m. The local update rule is used

422

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

by ants while building a solution. Ants visit paths
and change their pheromone level which is used
immediately to locally update the rule. The local
rule reduces the convergence because ants choose
a new machine based on high pheromone levels.

A machine becomes less desirable for the fol-
lowing ants, if the pheromone trail is reduced. The
global update rule is performed after that each ant
has completed its tour (a feasible solution) and
only one ant that has the best solution found so
far, is allowed to deposit pheromone to the path
after each iteration. Therefore, job j is assigned
from machine i to machine m in the global best
solution.

The experiments performed to evaluate the al-
gorithm were simulated using the GridSim (Buyya
and Murshed, 2002) toolkit. The results obtained
by authors have shown that the Ant Colony Opti-
mization algorithm is the best average case of the
tardiness time with respect to other algorithms as
First Come First Served (FCFS), Minimum Time
Earliest Due Date (MTEDD) and Minimum Time
Earliest Release Date (MTERD). FCFS is a policy
whereby the requests of service are attended to in
the order that they arrived, without other biases or
preferences. MTEDD orders the sequence of jobs
to be serviced from the job with the earliest due
date to the job with the latest due date. Finally,
MTERD gives the highest priority to the job that
has the earliest release date in the queue.

Mathiyalagan et al.

Another improved ACO algorithm was proposed
in (Mathiyalagan et al., 2010b). Authors have
developed a modified pheromone updating rule
which solves the Grid scheduling problem more
effectively than the traditional ACO algorithm
(Dorigo and Caro, 1999) by modifying its basic
pheromone updating rule. The basic pheromone
updating rule τij(t)new= ρ..τij(t)old + Δτij(t) has
been changed τij(t)new=(ρ.τij(t)old)+(ρ/(ρ+1).
Δτij(t)), where τij is the trail intensity of the path
(i, j) (j is a job and i is the machine assigned to

the job j), ρ is an evaporation rate and Δτij is an
additional pheromone added when a job is moved
by the scheduler to a resource.

The experimental results carried out by the
authors prove that the improved ACO algorithm
has an effective role on Grid scheduling. The modi-
fied pheromone updating rule makes the improved
ACO algorithm to work more efficiently than the
original ACO algorithm. This approach was also
simulated using GridSim (Buyya and Murshed,
2002) toolkit. The authors have achieved a better
optimization level because the improved ACO
algorithm finds the best resources to assign each
job at a faster rate, thus increasing efficiency.

Benerjee et al.

Another heuristic approach proposed by Benerjee
et al. (Banerjee et al., 2009) based on ACO was
adapted to address service allocation and sched-
uling within a Cloud Computing environment.
The proposed optimization method is mainly
aimed to maximize the scheduling throughput
to handle all the diversified requests according
to different resource allocator available under
a Cloud Computing environment. Second, the
pheromone update mechanism has been modi-
fied to minimize the makespan of services based
on Cloud Computing. Steps of the classic ACO
algorithm have been modified to manage a Cloud
architecture. A Cloud is viewed as a collection of
clustered services for executing jobs and storing
data, hence a live service of a Cloud behaves like
an ant. Each path between machines (r, s) has a
distance or cost associate δ(r, s) and a pheromone
concentration τ(r, s). The pheromone updating
rule is applied as:

τ (r, s) = (1 – α) τ (r, s) + Σ Δτk (r, s)

where α is the pheromone evaporation factor
between 0 and 1, and Δτk (r, s) is the cost done
by ant k if (r, s) is its path and it is 0 if it is not
in the path.

423

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Every time a request is processed on a Cloud
machine, the pheromone concentration is updated
for all the paths between machines modifying
the above formula by associating a parameter •τ.

τ (r, s) = (1 – αtcs) τ(r, s) + ΣΔ τk+tcs(r, s)

where •τ represents the time for each cloud schedul-
ing service and αtcs accounts for the evaporation
factor under time slot within cloud machines.
The heuristic is divided into two categories for
Cloud-based services: online mode service and
batch mode service. In online mode, whenever
a request arrives is immediately allocated to the
first free resource allocator. The arrival order of
the request in a Cloud is important in the proposed
method. Each service request is considered only
once for matching and scheduling. In batch mode,
requests are collected and the scheduler considers
the approximate execution time for each job. Then,
the scheduler uses a heuristic to make a better
decision. The authors have run examples in real
Cloud environments by using Google App Engine
and Microsoft Live Mesh in order to evaluate the
proposed ACO algorithm, achieving performance
improvements.

Ritchie and Levine

The work proposed in (Ritchie and Levine, 2004)
describe an ACO algorithm that, when combined
with Local Search (LS) (Alabas Uslu and Dengiz,
2011) and Tabu Search (TS) (Liao and Huang,
2011), can find shorter schedules on benchmark
problems than other techniques described in
(Braun et al., 2001). With LS technique, any
solution s will have at least one processor with
a schedule length equal to the makespan of the
solution, which is called the “problem” processor.
When more than one problem processor exists, one
of them is picked arbitrarily. The neighborhood
Ne of the solution s is defined as all solutions
that differ by a single transfer of a job currently
allocated from the problem processor to any other

processor, or by a single swap of a job currently
allocated to the problem processor with a job
allocated to other processor. On the other hand,
TS is a more sophisticated LS strategy that tries
to avoid entrapment in local minimum by using a
tabu list of previously visited regions of the search
space and disallowing moves that would result in
a solution that is contained in the list, i.e. one that
has been seen before.

The goal of this work was to minimize the
total execution time of a metatask (collection of
independent jobs with no inter-job dependences,
i.e. a PSE). Here, the authors assume that the
expected running time of each individual job on
each processor must be known. This informa-
tion is stored in an “Expected Time to Compute”
(ETC) matrix where a row contains the ETC for
a single job on each one of the available proces-
sors. Moreover, any ETC matrix will have n x m
entries, where n is the number of jobs and m is
the number of processors.

In order to simulate various possible hetero-
geneous scheduling problems as realistically as
possible, the authors have defined different types
of ETC matrices as proposed in (Braun et al., 2001)
according to three metrics: job heterogeneity,
machine heterogeneity and ETC consistency. Job
heterogeneity is the amount of variance possible
among the execution times of jobs and has two
possible values: high and low. Machine heteroge-
neity represents a possible variation of the running
time of a particular job across all processors, and
again has two values: high and low. In order to
try to capture some other possible features of
real scheduling problems, three different ETC
consistencies were used: consistent, inconsistent
and semi-consistent. An ETC matrix is said to be
consistent if whenever a processor pj executes a
job ji faster than another processor pk, then pj will
execute all other jobs faster than pk. This behavior
can be seen as modeling an heterogeneous system
such as Grid Computing in which the processors
differ only in their processing speed. An ECT
matrix is inconsistent when a processor pj can

424

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

execute some jobs faster than pk and some other
slower. Such an inconsistent ETC matrix could
therefore simulate a real network layer in which
there are different types of available machines.
Finally, a semi-consistent ETC matrix is an incon-
sistent matrix which has a consistent sub-matrix
of a predefined size, and therefore simulates for
example a Grid that incorporates a sub-network
of similar machines (but with different processor
speeds), but also includes an array of different
computational devices.

In this work the authors have determined what
information they must encode in the pheromone
trail to allow ants to share useful information about
good solutions. Due to the fact that jobs run at
different speeds on different processors, this infor-
mation is useful to store information about good
processors for each job. Therefore, the pheromone
value (i, j) was selected to represent the favorability
of scheduling a particular job j into a particular
processor i. The ants build their own solution using
both information encoded in the pheromone trail
and also problem specific information in the form
of an heuristic. Here, the heuristic used is Min-
min (Etminani and Naghibzadeh, 2007), which
suggests that the heuristic value of particular job
j should be proportional to the minimum comple-
tion time of j. The minimum completion time j can
be expected to finish on its best processor pjbest.
To leave a pheromone trail the authors have used
the Max-min Ant System (MMAS) described
in (Stützle and Hoos, 2000). Basically, only the
best ant sbest is allowed to leave pheromone. As
a consequence, after each iteration, the search is
much more aggressive and significantly improves
the performance of ACO algorithms.

Due to the fact that other researchers (Dorigo
and Stützle, 2003; Levine and Ducatelle, 2003)
have demonstrated that ACO algorithms can often
effectively be improved by combining them with
local search (LS) techniques, in this work the
authors have applied an ad-hoc LS technique to
the ACO algorithm proposed. The LS procedure
exhaustively analyses this neighborhood and
selects the swap or transfer which reduces the
maximum schedule length of the two processors

involved the most. The process must be repeated
until no further improvement is possible. On the
other hand, when TS is used in conjunction with
the ACO algorithm it is simply used for n itera-
tions to try to improve the solution of the iteration
best ant, which already have had LS applied to it.

Approaches Maximizing
Load Balancing

Hui Yan et al.

The work in (Hui et al., 2005) focuses on an im-
proved ACO algorithm for job scheduling in Grid
Computing. The aim of this approach is focused
on maximizing load balancing on machines. When
a resource j enrolls into a Grid system, it is asked
to submit its performance parameters, such as
number of processors, processing capability of
each processor, communication ability, etc. In
the Grid, a resource finder tests these parameters
for validation and initializes the trail intensity,
which represents pheromones of real ants, for
the resource j in the ACO algorithm. Here, τi(0)
is the trail intensity on path i from the scheduler
to the corresponding resource i at time 0. In the
classic ACO the pheromone trail is changed by
applying the following updating rule: τi = ρτi +
Δτi, where ρ models evaporation and Δτi is an
additional pheromone.

This algorithm adds a load balancing factor.
The load balancing factor λi, which is related to
the job finishing rate in the resource i in order to
change the pheromone trail. This makes the job
finishing rate at different resource being similar
and the ability of the systematic load balancing is
improved. The trail intensity has been changed to
τi = ρτi + Δτi + Cλi, where C > 0 is the coefficient
of the load balancing factor. When more jobs are
finished, the trail intensity increase, contrarily,
when the jobs are not completed the trail intensity
decreases. A simulation system was developed
to test the ACO algorithm in a simulated Grid
environment, which showed the feasibility of the
approach.

425

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Fidanova and Durchova

The work proposed in (Fidanova and Durchova,
2005) introduces a job scheduling algorithm for
Grid Computing. The algorithm is focused on
maximizing load balancing on machines. The aim
of this approach was to develop a high throughput
computing scheduling algorithm based on ACO,
which means scheduling a set of independent jobs
to increase the processing capacity of a system
over a long period of time.

The proposed ACO algorithm incorporates the
use of a function free(i) to report when a machine
i is released. If a job tj is executed on a machine
mi, then the beginning time of tj becomes bj =
free(i) + 1 and the new value of the function free(i)
becomes free(i) = bj + ETij = CTij after assigning
the job tj, where ETij is the expected execution
time of the job tj on the machine mi and CTij is the
expected completion time. The heuristic informa-
tion used by the algorithm is ηij = 1/free(i). The
heuristic decides that if a machine is freed earlier,
the corresponding node –in SI terms– will be more
desirable. At the end of each iteration the objective
function is calculated as Fk = max(free(i)) over
the solution constructed by ant k. The additional
pheromone trail added by an ant is Δτij = (1 – ρ)/
Fk, where ρ models the evaporation factor. Hence,
in the subsequent iterations the elements of the
solution with less value of the objective function
will be more desirable.

In the proposed algorithm two kinds of sets
of job are needed: a set of scheduled jobs and a
set of arrived and unscheduled jobs. When the set
of scheduled jobs becomes empty the scheduled
algorithm is started over the jobs from the set
of unscheduled jobs. This guarantees that the
machines will be fully loaded.

Zehua and Xuejie

In the work (Zehua and Xuejie, 2010) the authors
have proposed a load balancing mechanism
based on ACO and complex network theory in

Open Cloud Computing Federation (OCCF), a
federation that includes multiple Cloud provid-
ers devoted to create an uniform Cloud resource
interface to users. Moreover, in the context of
network theory, a complex network (Carpi et
al., 2011) is a graph (network) with non-trivial
topological features -features that do not occur
in simple networks such as lattices or random
graphs but often occur in real graphs. The study
of complex networks is a young and active area of
scientific research inspired largely by the empirical
study of real-world networks such as computer
networks and social networks. Some of recent
studies were focused on the issue of whether the
same principles could be applied to the develop-
ment of the computer-network communication
(Strogatz, 2001).

Load balancing is a very important goal to
achieve in Cloud Computing due two reasons.
First, Cloud providers must use load balancing
in its own Cloud platform to provide a solution
with high efficiency for the user. Second, a load
balancing mechanism is needed to achieve low
monetary costs and “infinite” resource pool for
users.

In nature and in technology many systems
consist of a large number of highly interconnected
dynamical units. Despite the inherent differences,
most of the real networks are characterized by the
same topological properties, such as relatively
small characteristic path lengths, high clustering
coefficients, and so on. All these features make real
networks radically different from regular lattices
and random graphs, i.e. the standard models stud-
ied in mathematical graph theory. For this reason,
the authors only have considered small-world
property and scale-free distribution. A network
is called a small-world network by analogy with
the small-world phenomenon, which is popularly
known as six degrees of separation. The small
world hypothesis is the idea that two arbitrary
people are connected by only six degrees of separa-
tion, i.e. the diameter of the corresponding graph
of social connections is not much larger than six.

426

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

The first small-world network model (Stro-
gatz, 2001), which through a single parameter
smoothly interpolates between a random graph
to a lattice. Their model demonstrated that with
the addition of only a small number of long-range
links, a regular graph, in which the diameter is
proportional to the size of the network, can be
transformed into a “small world” in which the
average number of edges between any two vertices
is very small (mathematically, it should grow as
the logarithm of the size of the network), while
the clustering coefficient stays large. It is known
that a wide variety of abstract graphs exhibit the
small-world property, e.g., random graphs and
scale-free networks. Further, real world networks
such as the World Wide Web and the metabolic
network also exhibit this property.

On the other hand, a network is named scale-
free when the probability that a machine selected
uniformly at random has a certain number of links
(degree), follows a particular mathematical func-
tion called a power law. The power law implies
that the degree distribution of these networks has
no characteristic scale. In contrast, network with a
single well-defined scale are somewhat similar to
a lattice in that every machine has (roughly) the
same degree. In a network with a scale-free degree
distribution, some vertices have a degree that is
orders of magnitude larger than the average these
vertices are often called “hubs”, although this is
a bit misleading as there is no inherent threshold
above which a machine can be viewed as a hub.
If there were such a threshold, the network would
not be scale-free.

These two characteristics are considered by
the authors to move ants, since the machine with
a large degree may leads the ants (or the jobs)
move more quickly towards the region where
more resources may be found for the execution
of the jobs.

In order to perform the load balancing, the
four following steps are carried out:

1. Underload load balancing step: Here an ant
is periodically sent out by an underloaded
machine to balance the workload on the
whole OCCF and keep the complex net-
work’s vitality by updating the pheromone
on each machine through the following steps:
once the ant starts its trip from a machine
and whenever the ant moves, during its trip,
the ant remembers the machine which has
maximum/minimum workload and the cor-
responding workload on them.

2. Overload load balancing step: Once a
machine find its workload has excess its
own threshold W, an ant is sent out by the
machine, then, the following processes are
carry out as the underload load balancing
method except that the source machine of
ants is appointed as the Nmax, where Nmax
is the machine with maximum workload.

3. Pheromone update step: Once the load bal-
ancing is performed between the machines
Nmax and Nmin, the ant backtracks the path
that has traversed to update the pheromone
values on the trail. To this end, each machine
maintains a pheromone table of the trails
which link to its neighbor machines and
the values corresponding to the amount of
pheromone on the path is stored in this table.
The pheromone update process includes
both increase and evaporation. Besides, the
distribution of the pheromone changed on
the whole path is assigned according to the
strategies that more pheromone is assigned to
the paths near to Nmax and less pheromone
to the paths near to Nmin.

4. Complex network evolution step: The
structure of the complex network evolves
to adapt to changes in workload distribu-

427

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

tion, after updating the pheromone, adding
a new path between machines Nmax and
Nmin is considered only if there is not such
a path and the cost effectiveness is greater
than a threshold Fmax. On the contrary, the
elimination of a path is considered if the
path has been sleeping too long. Therefore,
a complex network with the characteristic
of small-world and scale-free is expected
to be gained through the local behaviors of
the colonies of the ants, theses two char-
acteristic is useful in the load balancing
processes of the ant algorithm. This means
that the machine with a large degree in such
a complex network may leads the ants move
more quickly towards the region where more
resources may be found for the execution of
jobs.

Due to the fact a OCCF is consist of many
cloud computing service provider’s (CCSP) facili-
ties, there would be many management regions
-partitioned by geographically or the manage-
ment strategies- that belong to an unique CCSP.
A machine in each management region is chosen
as the region load balancing node (RLBN), each
RLBN connect with many of the other RLBNs
of a CCSP according to the information get from
the CCSP. After that, many RLBN of a CCSP are
selected to connect with RLBNs in other CCSP,
so the topology of the connected RLBNs makes
an overlay network which can be regarded as a
complex network. The structure of the OCCF is
depicted in Figure 5. A RLBN can add to or re-
move from the management region. Also, another
RLBN can be selected from the region machines
once a RLBN is failed.

Figure 5. The structure of the OCCF and the formation of the complex network

428

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Approaches Minimizing Makespan
and Maximizing Load Balancing

Kousalya and Balasubramanie

In (Kousalya and Balasubramanie, 2009) the au-
thors have proposed a modified ACO algorithm
for Grid scheduling. The main focus of this work
was to develop a high throughput scheduling
algorithm based on ACO to minimize the makes-
pan and maximize the resource utilization. The
modified ACO is combined with Local Search
(LS) and takes into consideration the available
time of resources and the execution time of jobs
to achieve a better resource utilization and a bet-
ter scheduling. The LS (Alabas Uslu and Dengiz,
2011) technique is to define the neighborhood of
a solution. In general a solution will have one or
more resources, i.e. those with schedule lengths
equal to the makespan of the whole solution.

In this work, before starting the grid schedul-
ing, an expected execution time for each job on
each machine must be estimated by an user and
represented by an ET matrix. The ET matrix has
NxM entries, where N is the number of indepen-
dent jobs to be scheduled and M is the number of
resources that are available. Each row of the ET
matrix represents an estimated execution time for
a job on each resource. Then, every column repre-
sents an estimated execution time for a particular
resource. ETij is thus the expected execution time
of the job j in the machine i.

The Ready time (Readym) indicates the time
resource m would have finished the previously
assigned jobs. The completion time (CT) of jth job
on the ith machine is CTij = Readyi + ETij. The
proposed heuristic has two operating modes, an
online mode where the scheduler is always ready,
and other in batch mode, where the jobs and re-
sources are collected and mapped at preschedul-
ing time. In this sense, the bach mode scheduler
takes better decisions because it knows details of
available jobs and resources statically.

The number of jobs available for scheduling
is always greater than the available number of
machines in the grid. The free time of the ma-
chine mi is calculated using the function free(i).
The starting time of job tj on resource mi is Bi =
free(i) + 1 and then the new value of free(i) is the
starting time plus ETij. A minimization function F
= max(free(i)) and the heuristic information ηi =
1/free(i) are used to find out the best resource. The
pheromone level is updates adding an evaporation
factor value between 0 and 1, and an additional
pheromone value.

The probability to move a job from a machine
i to a machine j is computed by Pij = (τij . ηij . (1/
CTij)) / (Στij . ηij . (1/ CTij)). Here, the authors
have included to the classic approach (Dorigo
and Caro, 1999) CTij value, which represents the
execution time of the jth job in the ith machine
in the calculation of probability and has shown
a positive result in performance improvement.
This improvement is in terms of to decrease the
makespan. The result produced by this algorithm
is a little better than others algorithms proposed
by the authors in (Kousalya and Balasubramanie,
2007; Kousalya and Balasubramanie, 2008) where
ETij instead of CTij has been used.

The scheduling algorithm is executed periodi-
cally. Upon activation, the algorithm finds out the
list of available resources (processors) in the Grid,
forms the ET matrix and starts the scheduling.
When all the scheduled jobs are dispatched to
the corresponding resources, the scheduler starts
to schedule over the unscheduled job matrix ET.
This is to guarantee that the machines will be as
loaded as possible.

An individual scheduling result in the modified
ACO algorithm has four values (job, machine,
starting time, completion time). These values
are added to an output list. The starting time of
the job j on the machine i is acquired through the
function free(i), and the completion time is the
starting time plus ETij. Finally, the output list is
passed to an algorithm that uses the LS technique
to reduce the overall makespan further. Try to

429

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

reduce the resource makespan will immediately
reduce the overall makespan of the solution. The
neighborhood is a solution of single transfer of a
job from a resource to any other resources.

The experiments performed by the authors have
shown that the proposed modified ACO algorithm
is capable of producing high quality scheduling of
jobs to Grid resources. Particularly, the algorithm
can be used to design efficient dynamic schedul-
ers for real time Grid environments. Additionally,
by using ACO with their LS algorithm good load
balancing results can be obtained.

Ruay-Shiung et al.

In (Ruay-Shiung et al., 2009) the authors propose
the Balanced Ant Colony Optimization (BACO)
algorithm for job scheduling in a Grid environ-
ment. The pheromone value on a path in the ant
system is a weight for a resource in a Grid. More-
over, a resource with a larger weight value means
that the resource has better computing power. For
materializing the BACO algorithm the authors
assume that each job is an ant and the algorithm
sends the ants to search for resources.

BACO inherits the basic characteristics from
ACO algorithm to decrease the computation
time of executing jobs and considers the load
of each resource. The BACO algorithm changes
the pheromone density according to the status of
resources by applying both a local pheromone
update and a global pheromone update function.
The pheromone value of each resource is stored
in the scheduler. The pheromone indicator is
calculated in each resource and for each job by
adding an estimated transmission time and the
execution time of a given job when it is assigned
to a resource. The larger the value of pheromone
Pij is, the more the efficiency of resource i when
executing job j. The local and global pheromone
update functions balance the system load. The lo-
cal pheromone update function updates the status
of the selected resource after a job assignment
round. The global pheromone update function, on
the other hand, updates the status of each resource
for all jobs after the completion of each job.

Xu et al.

In the work proposed in (Xu et al., 2003), the au-
thors validate the scalability of the ACO algorithm
using a simple Grid simulation architecture for
resource management and job scheduling. Once
the authors have got the results of an n machines
ACO problem, they can get the results of n +
m or n – m machines of the same problem very
quickly based on former results. The basic ACO
algorithm has been improved by making it more
suitable for Grid job scheduling. The extended
algorithm works as follows:

1. When a resource i joins a Grid, the resource
is asked to submit its performance parameters
(number of Processing Elements, MIPS of
every Processing Element, where MIPS
(Zhang and Theodoropoulos, 2003) is a
measure of a computer’s central processing
unit performance in Million Instructions Per
Seconds, and so on). A resource monitor
tests these parameters for validation and
initializes links of pheromone taking into
account these performance parameters.

2. Every time a new resource joins the Grid or
a resource fails or a job is assigned or there
is some job results available/returned, the
pheromone value in the path to the corre-
sponding resource will be changed. When
a job is assigned to a resource, the transfer
time of the job is subtracted to the pheromone
value. When a job is returned successfully
from a resource, an encourage factor is
added to the pheromone value. When a job
is returned as failed from a resource, a punish
factor is applied.

3. The probability of assignment a job to a
resource i is calculated taking into account
the pheromone intensity on the path to the
resource i, the innate performance of the
resource (initial pheromone value), and
two parameter values that correspond to
the importance of the pheromone and the
importance of the resource innate attributes.

430

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

In this work the authors have validated the
scalability of the proposed algorithm by a simple
Grid simulation architecture for resource manage-
ment and job scheduling. To do several routing
experiments, the authors have added new machines
and providing or not providing to the algorithm
previous information. When the extended algo-
rithm uses previous information took less time to
find the optimal or sub-optimal solutions. Using
tens of machines or more than one hundred ma-
chine network, or cut off some machines of the
network, the results shown similar findings. This
characteristic is very helpful to Grid computing
for its scalable and fault tolerance needs. The
overall results have shown good response time
and resource average utilization.

Ludwig and Moallem

In the work proposed in (Ludwig and Moallem,
2011) a distributed algorithm based on ACO
(AntZ) is presented. Authors claim that to achieve
a good load balancer the following characteristics
should be addressed:

• Optimum Resource Utilization: The uti-
lization of resources should be optimized
by a load balancing algorithm to minimize
time or cost related to these resources.

• Fairness: A load balancing algorithm
should to be fair. This means that the dif-
ference between the heaviest loaded ma-
chine and lightest loaded machine in the
network is minimized, keeping in mind
that the search space is dynamic. The load
is the number of jobs assigned to each re-
source relative to its computational power.

• Flexibility: When the topology of the net-
work or the Grid changes, the algorithm
should be flexible enough to adhere to
these changes.

• Robustness: When failures in the system
occur an algorithm should have a way to
deal with the failure and be able to cope
with the situation.

In other classical ACO-based approaches to
job scheduling, ants act independently from jobs
being submitted while in this approach there is
a close binding between jobs and load balancing
ants. In the AntZ algorithm, each job submitted
to a Grid invokes an ant, which searches through
the network to find the best machine to deliver
the job. Ants leave information related to the
machines that have visited as a pheromone trail.
The pheromone trail in each machine helps other
ants to find lighter resources more easily.

The AntZ algorithm adds a decay rate and a
mutation rate to deal with the problem of load
balancing.

When a job is submitted to a local machine
in the Grid an ant is initialized and starts work-
ing. In each iteration, the ant collects the load
information of the visited machine and save this
information in its private history table. The ant
also updates the load information table of the
visited machines. The load information table of a
machine contains information of its own load and
load information of other machines, which were
added to the table when ants visited the machine.
The load information table acts as a pheromone
trail an ant leaves while it is moving, in order to
guide other ants to choose better paths rather than
wandering randomly in the network. Entries of
each local table are the machines that ants have
visited on their way to deliver their jobs together
with their load information.

When an ant moves to the next machine has
two choices. One choice is to move to a random
machine with a probability given by the mutation
rate. Another choice, on the other hand, is to use
the load table information in the machine to choose
where to go. The mutation rate decreases with a
decay rate factor as time passes, thus the ant will
be more dependent to load information than to
random choice. This iterative process is repeated
until the finishing criteria –i.e. a predefined number
of steps– is met. Finally, the ant delivers its job
to the machine and dies.

The performance of the AntZ algorithm is
evaluated using performance criteria such as
makespan and load balancing level. In this re-

431

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

search authors have compared the performance
of the AntZ algorithm with another SI algorithm
based on Particle Swarm Optimization (Parti-
cleZ) described later in this survey. The authors
performed measurements to compare the two
algorithms in order to identify which are more
effective and under which conditions. The authors
also compared the performance of the algorithms
with other classical techniques. To carry out the
experiments the GridSim [52] simulation toolkit
was used.

The advantages of the proposed algorithms
are threefold. First, the algorithms show good
performance results and optimized resource
utilization. Second, the algorithms have proved
to be “fair” compared to a Random and State
Broadcast Algorithm (SBA) approach. The Ran-
dom approach is a simple scheduling algorithm in
which the jobs being sent to the Grid are assigned
randomly to different resources. On the other
hand, SBA is based on broadcast messages which
are exchanged between resources. Whenever the
state of a machine changes, due to the arrival or
departure of a job, the machine broadcasts a status
message that describes its new state. This informa-
tion policy enables each machine to hold its own
updated copy of the system state Third, AntZ is
very simple to implement which is a benefit for
a distributed system. Finally, looking at the scal-
ability of the algorithms they show linear growth
in response to both an increase in the number of
jobs and an increase in the length of jobs, which
ensures scalability.

Palmieri and Castagna

The work presented by Palmieri and Castagna
(Palmieri and Castagna, 2007) is focused on the
ACO algorithm to achieve a good load balanc-
ing. In this work a Grid resource management
framework was implemented as an ant-like self-
organizing mechanism used to perform efficient
resource management on Grid machines through a
collection of very simple local interactions. These
interactions are achieved by heuristically deter-

mining a scheduling solution that distributes the
jobs on the Grid resources minimizing the overall
Grid makespan, and the flowtime, i.e. sum of the
completion times of all jobs. In this algorithm
each job is carried by an ant. Ants cooperatively
search for the less-loaded machines with sufficient
available resources, and transfer the jobs to be
executed to these machines. When an ant founds
a machine to assign the job, it deposits pheromone
to mark the detected solution.

A pheromone matrix will have a single entry
for each job-machine pair in the problem and
use a parameter which defines the pheromone
evaporation rate. To build a solution the ants use
heuristic information to guide their search with
specific information of the problem. The heuristic
value used by the ants for each job is inversely
proportional to the minimum completion time for
the job j on all the available machines, or better
stated its completion time on the best available
machine on the Grid.

Essentially, in this paper the authors want to
maximize the productivity (throughput) of a Grid
through an intelligent load balancing and at the
same time, the authors want to obtain planning
that offer a quality of service acceptable to the
users. Consequently the fitness function for the
assignment and balancing problem is simply be
the inverse of the sum of makespan ms and mean
flowtime fs of the solution s, weighted by a prop-
erly crafted parameter λ to give more priority to
makespan, as it is the most important parameter.
The fitness function equation is fs = 1/(λ.ms +
(1 – λ).fs).

Simulation results performed by authors upon
different experimental Grid topologies have indi-
cated that this proposed approach is highly adap-
tive, robust and effective in handling the above
scheduling/load balancing problem. Moreover,
the approach performs slightly better than the
Tabu Search heuristic, especially in the presence
of larger problems, i.e. with more Grid machines
and jobs, since in these cases the number of ants
associated to jobs and machines greatly increases.

432

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Approaches Minimizing Makespan
and Minimizing Monetary Cost

Srinivasan et al.

In (Srinivasan et al., 2005) the authors have pro-
posed the Swarm Intelligence based approach
for Task Allocation (SITA) algorithm. Here, the
authors employed an ACO algorithm which aims
is to optimize the often conflicting parameters of
cost measured in Grid$ and execution time, both
within a similar threshold. By programming a
mathematical model of the behavior of the ACO
into mobile agents (Garrigues et al., 2010), the
authors proposed an heuristic for the Grid job
allocation problem.

In the algorithm, a Global Resource Manager
(GRM) accepts jobs from users. GRM maintains
two queues. The first one is used for jobs with
specification of time optimization, and the second
one is devoted to jobs that require cost optimiza-
tion. When a job is received by the GRM, it is
queued into the appropriate queue depending on
the scheduling policy specified by the user. In the
Grid architecture implemented and used for give
support this algorithm there is a layer below the
GRM called Local Resource Managers (LRMs),
which hold administrative authority over a subset
of Grid resources that registered with it. Ants are
deployed from a LRM to its corresponding β Grid,
or a sub-grid under the administrative influence of
the LRM. Each ant carries the job characteristics,
the machines visited so far, the route cost so far
and the Grid$ spent so far. An ant also maintains a
tabu list which contains a list of visited paths. This
list is maintained so that ants can avoid traveled
links and thus avoid cycles. The characteristics
include, trail intensity of both cost pheromone and
time pheromone and the communication cost as
obtained by using a modified link state flooding
approach.

The next hop is selected probabilistically based
on the pheromone intensity and the cost of that
link. The pheromone evaporation rate makes the

system responsive to dynamic network conditions,
i.e. available network bandwidth, number of avail-
able machines, traffic network, etc. The job that
was removed from the queue is handed over to all
the LRMs which then individually compute the
best allocation for this job making use of SITA.
Based on an optimality index for the goodness of
the fit, the best allocation is chosen for the job.

From the LRM and for each job, a swarm of
explorer ants is deployed. The swarm crawls to-
wards the best possible Grid resource to allocate
the job to. Each ant chooses its next hop on the
basis of a stochastic function that depends on
two parameters, namely the proximity of a Grid
Resource (to keep communication cost and trans-
mission time low), and the trail intensity, which
is a function of the number of ants that have gone
through that link. In the LRM, after a specified
percentage of ants report back the same path, the
allocator ant is sent to the chosen Grid resource to
allocate memory and resources. As the allocator
ant traces the path, it proportionately lowers the
pheromone levels.

Approaches Minimizing Makespan,
Maximizing Load Balancing, and
Minimizing Monetary Cost

Sathish and Reddy

In (Sathish and Reddy, 2008) the authors have
presented and evaluated a dynamic scheduling
strategy that maximizes the utilization of a Grid
resource processing capabilities (load balancing),
and reduces the processing cost and processing
time taken to execute jobs on the Grid. This job
scheduling strategy enhances (Xu et al., 2003)
by taking into account the processing require-
ments for each job, the current state of the avail-
able resources, the current load and capacity of
those resources, and the processing cost of those
resources. The scheduler schedules a job based
on the execution possibilities of the resources.

433

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

The possibility of assignment of a job to a
resource i is calculated taken into account the
pheromone intensity on the path to resource i, and
two factors that represent the importance of the
pheromone and the importance of the resource,
respectively. The problem with the proposed algo-
rithm in (Xu et al., 2003) is that it may schedule
a job to a resource with low possibility even if
the resources with high possibility are free, where
“possibility” refers to a numeric value that tells
how good a resource is for a given job. If the
jobs are always scheduled to a resource with high
possibility, then the load on the resource may be
increased and the jobs may be kept waiting in the
queue waiting for the resource to be free even
though the other resources are free. To avoid this
problem, Sathish and Reddy have proposed the
following: if the difference between the possibility
of the resource selected for executing a job using
ant-algorithm proposed in (Xu et al., 2003) and
the possibility of the resource with the highest
possibility is less than a certain threshold, then the
job will be scheduled to the resource selected by
the ant-algorithm (Xu et al., 2003). Otherwise, the
scheduler selects another resource and the above
procedure will be repeated. The selection of the
threshold plays an important role.

Since this modified algorithm takes the re-
sources with highest possibility into consideration,
although the processing time is reduced, the
processing cost of the jobs may increase when
is compared to ant-algorithm (Xu et al., 2003).
The inclusion of price factor into this modified
algorithm minimizes the total execution time as
well as the processing cost of the jobs. The price
factor is selected by the Grid user who submits the
jobs. For the experiments, the authors have been
selected 1/number_of_resources as the thresh-
old value. In order to evaluate the proposed job
scheduler GridSim toolkit (Buyya and Murshed,
2002) have been used.

ANALYSIS OF ACO-BASED
SCHEDULING APPROACHES

This section presents a summary of the schedulers
based on Ant Colony Optimization described in
the previous section. Table 1 summarizes each
one of the objectives –among other aspects– for
which these algorithms have been applied. Spe-
cifically, each one of the columns in the Table 1
is described below:

• Paper: Contains a reference to the paper in
which the authors describe the proposed
work.

• Distributed Paradigm: Is the kind of dis-
tributed environment in which the different
authors have applied their scheduling tech-
niques. “Grid” is an abbreviation for “Grid
Computing” and “Cloud” refers to “Cloud
Computing”.

• Additional Technique: Indicates wheth-
er the authors have combined the ACO
technique with another metaheuristic
technique.

• Objectives: List the objectives to be mini-
mized or maximized by the proposed ACO
algorithm.

• Algorithm Evaluation: Refers to the
type of environment in which the experi-
ments were performed by the authors. The
environment may be for example a real
platform, a simulated environment (when
details about the simulation tools are not
given in the articles), or a specific simula-
tion toolkit.

• Values of Input Variables: Here are the
values of the ACO-specific variables that
were used in the algorithms. Possible vari-
ables are:
 ◦ α, importance of trail intensity.
 ◦ β, importance of resource.
 ◦ ρ, permanence of pheromone trail.
 ◦ (1-ρ), evaporation of pheromone trail.
 ◦ P, overhead incurred in resource.

434

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

 ◦ τ0, initial pheromone.
 ◦ ce, encouragement coefficient.
 ◦ cp, punishment coefficient.
 ◦ c, coefficient of load balancing factor.
 ◦ ants, the number of ants in the colony,

i.e. the number of ants created by the
ACO algorithm and sent to find the
most suitable machines.

 ◦ Cost per sec, the processing cost per
second of machines.

 ◦ Mutation rate, a probability used to
decide if an ant moves to a random
machine.

 ◦ Decay rate, a factor that causes the
mutation rate decreases as time
passes.

 ◦ --- means that it does not apply to the
category or the authors did not pro-
vide information.

• Experiment Size: Describes the number
of jobs and the number of machines used
in the performed experiments.

• Extra Output: Tells whether the authors
have measured other metrics in the experi-
ments in addition to the ones strictly asso-
ciated to the objectives.

• Resource Allocation: Refers to the time
in which the allocation of jobs to resources
is scheduled. Static resource allocation
means that when the allocation of jobs to
resources takes place, the scheduler has
complete information in advance, i.e. the
scheduler knows the details of both the
jobs to allocate and the available resources.
On the other hand, dynamic resource allo-
cation means that the jobs to be scheduled
arrive at different times, and moreover that
resource availability changes over time. A
hybrid resource allocation is when some of
the jobs are known in advance, and other
jobs arrive at different times to be sched-
uled for execution and details of them are
not available until they are received.

As can be seen in algorithms included in Table
1, pheromone trail modeling has been subject of
great attention in order to improve the schedul-
ers and to achieve the proposed objectives. A
modification of this type is for example proposed
in (Hui et al., 2005; Ruay-Shiung et al., 2009).
Here, the authors add a load balancing factor to
the pheromone trail. With this factor resources
have similar completion rates, and thus the abil-
ity of load balancing across the overall system
is improved. Many authors (Lorpunmanee et
al., 2007; Mathiyalagan et al., 2010; Banerjee et
al., 2009; Srinivasan et al., 2005; Palmieri and
Castagna, 2007) have taken into account in the
pheromone update rules the use of a pheromone
evaporation rate and pheromone permanence
rate. The pheromone evaporation rate is used to
indicate that some of the paths traveled by ants
are not very interesting, and to prevent that other
ants choose those paths. On the other hand, the
pheromone permanence rate is used to strengthen
the most interesting paths, i.e. the paths chosen
by the largest number of ants.

Specifically, the BACO algorithm proposed in
(Ruay-Shiung et al., 2009) changes the pheromone
update rules (local and global) to achieve better
load balancing in the system. The local update rule
refreshes the status of a selected resource after job
allocation. On the other hand, the global update
rule updates the status of each resource for all jobs
after completion of each job. Thus, the scheduler
keeps updated information of all resources for the
next resource allocation round.

Moreover, in (Zehua and Xuejie, 2010;
Kousalya and Balasubramanie, 2009; Ritchie
and Levine, 2004) the authors have combined the
classical ACO algorithm with other techniques or
algorithms, such as Local Search or Tabu search.
These algorithms have been helpful for research-
ers to obtain better results than classical (raw)
SI approaches. However, just by looking at the
Table 1, it clearly seems that the community is
still influenced by the idea of developing “pure”
ACO-based approaches rather than using comple-
mentary metaheuristics.

435

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Table 1. Summary of swarm intelligence approaches

Paper Distributed
paradigm

Additional
technique

Objectives Algorithm
evaluation

Values of
input variables

Experiment
size

Extra
outputs

Resource
allocation

Lorpun-
manee et
al., 2007

Grid --- Minimize
makespan

GridSim
toolkit

ants=30, β=0.5,
ρ=0.9,

3000 jobs
10-20 ma-
chines

Total
schedul-
ing time

Dynamic

Hui et al.,
2005

Grid --- Maximize load
balancing

Simulated Grid α=0.5, β=0.5,
P=0.99,
ce=0.0003,
cp=0.002, c=4

1000 jobs
10 machines

Simulat-
ing time

Dynamic

Mathi-
yalagan et
al., 2010

Grid --- Minimize
makespan

GridSim toolkit --- 10-20 jobs
5 machines

--- Static

Fidanova
and
Durchova,
2005

Grid --- Maximize load
balancing

Simulated Grid τ0=0.01, ρ=0.5,
ants=1

20 jobs
5 machines

--- Hybrid

Ruay-
Shiung et
al., 2009

Grid --- Minimize
makespan.
Maximize load
balancing

Real Grid (Tai-
wan UniGrid
platform + GT4
Globus toolkit)

α=0.5, β=0.5,
P=0.99,
ce=0.0003,
cp=0.002, c=0.4

1000 jobs
25 machines

Average
execu-
tion time
per job
and
standard
deviation
of load

Dynamic

Zehua and
Xuejie,
2010

Cloud Complex
network

Maximize load
balancing

Ad-hoc complex
network with
Java algorithm
simulation
software

--- 1000 jobs
100 ma-
chines

Standard
deviation
of load

Dynamic

Banerjee
et al.,
2009

Cloud --- Minimize
makespan

Real Cloud
(Google App
Engine + Micro-
soft Live Mesh)

τ0=0.01, ρ=0.5,
one ant per
service

25 services
request
5 machines

--- Dynamic

Xu et al.,
2003

Grid --- Minimize
makespan.
Maximize load
balancing

Simulated Grid α=0.5, β=0.5,
ρ=0.8, ce=1.1,
cp=0.8

20 jobs
10 machines

Resource
average
usage
ratio

Dynamic

Srinivasan
et al.,
2005

Grid --- Minimize
makespan.
Minimize mon-
etary cost

Simulated Grid ants=1-4 --- Alloca-
tion cost

Dynamic

Kousalya
and
Balasub-
ramanie,
2009

Grid Local
search

Minimize
makespan.
Maximize load
balancing

Simulated Grid --- 512 jobs
16 machines

--- Dynamic

Ritchie
and
Levine,
2004

Grid Local and
tabu search

Minimize
makespan

Simulated Grid α=1-50, β=1-
50, τ0=0.01,
ρ=0.75, ants=10

512 jobs
16 machines

--- Static

continued on following page

436

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Another fact that can be observed is that
most works have been validated in simulated
environments, with a number of used jobs that
do not exceed 1000 jobs. Within the Distributed
Computing community, it is broadly accepted to
establish simulated experimental scenarios due
to the inherent difficulty of performing tests in
real environments. Nevertheless, in real scien-
tific experiments, such as those described at the
beginning of this work, the number of jobs to be
performed can far exceed that amount. It is then
necessary to consider how these algorithms based
on ACO respond to situations of greater stress
on the machines, at least in simulated scenarios.

A fundamental issue to achieve High Perfor-
mance in Distributed Computing systems is re-
source allocation. As the reader can see from Table
1, the authors have proposed different resource
allocations techniques. Resource allocation is used
to assign the available resources in an efficient
way. This means to schedule jobs on the resources
required by those jobs while taking into consider-
ation both the resource availability and the size of
jobs to run. Distributed job scheduling is broadly
classified according to resource allocation as static
and dynamic. On one hand, static schemes use a
priori knowledge about jobs behavior and do not
obtain information about dynamically changes

of the environment, i.e. available resources. On
the other hand, dynamic schemes make few as-
sumptions about jobs characteristics and obtain
information about the jobs and available resources
before making a job scheduling decision.

As shown in the Table 1, some researchers
(Mathiyalagan et al., 2010; Ritchie and Levine,
2004) have proposed job scheduling algorithms
that use static resource allocation. Due to the fact
that both Grid Computing and Cloud Comput-
ing are environments where the availability of
resources is highly dynamic by nature and the
jobs arrive over time, applying static resource
allocation is unrealistic in practice. On the other
hand, in real systems available today there is great
difficulty of obtaining complete information about
the jobs and resources in advance. In this sense,
hybrid resource allocation schemes have been
also proposed in an attempt to provide a balance
to this trade-off.

On the upside, each one of the changes intro-
duced by the authors to the original ACO algorithm
has made the resulting algorithms more efficient
according to their objectives. All modifications
have achieved better schedulers to complete the
execution of jobs within a minimum time and
use the resources more efficiently. The Table 1
evidences, however, that most of these algorithms

Paper Distributed
paradigm

Additional
technique

Objectives Algorithm
evaluation

Values of
input variables

Experiment
size

Extra
outputs

Resource
allocation

Sath-
ish and
Reddy,
2008

Grid --- Minimize
makespan.
Maximize load
balancing

GridSim toolkit Cost per
sec=1-7
Thesh-
old=0.1-0.5

40 jobs
20 machines

--- Dynamic

Palm-
ieri and
Castagna,
2007

Grid --- Minimize
makespan.
Maximize load
balancing

Simulated Grid α=15, β=10,
ρ=0.8

512-4096
jobs
32-256
machines

Simula-
tion time

Dynamic

Ludwig
and Moal-
lem, 2011

Grid --- Minimize
makespan.
Minimize mon-
etary cost.
Maximize load
balancing

GridSim toolkit Mutation
rate=0.5
Decay rate=0.2

1000 jobs
100 ma-
chines

Simula-
tion time

Dynamic

Table 1. Continued

437

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

are focused on minimizing makespan and achieve
a proper load balancing, but they do not deal with
other interesting and important metrics such as
energy use.

Precisely, the development of computing
systems has been traditionally focused on perfor-
mance improvements, for example minimizing
execution times of the applications. Due to the
large growth of scientific applications, more and
more resources are necessary for processing. As
a consequence, energy consumption has become
a crucial problem (Liu and Zhu, 2010; Baliga et
al., 2011; Beloglazov et al., 2011), on one hand
because it has started to limit further performance
growth due to expensive electricity bills, and on
the other hand, by the environmental impact in
terms of carbon dioxide (CO2) emissions caused
by high energy consumption. This problem arises
due to the processing of large amounts of data,
management and switching of communications,
and so on, and in fact has gave birth to a new field
called Green Computing (Li and Zhou, 2011).

In distributed environments such as Cloud
Computing it is important minimize energy con-
sumption within data centers. It is also important
to consider the energy required to transport data to
and from the end-user and the energy consumed
in the process of doing so. We believe that since
job scheduling techniques based on ACO have
proven to be highly efficient in optimization prob-
lems can also be good candidates to address the
problem mentioned above. Energy consumption
could be then a variable within the objectives of
a new algorithm. Indeed, an exhaustive search for
journal papers regarding SI-based job schedulers
for Cloud Computing that do consider energy
consumption –which was performed at the time
of writing this paper– yielded as a result only
one paper (Jeyarani et al., 2011). This shows the
undeveloped nature of the topic and therefore the
research opportunities therein.

Finally, a distinctive feature of the surveyed
works not shown in the Table 1 is that they do
not consider job priority. Particularly, for running

PSEs, this is a very important aspect. For example,
when designing a PSE as N sets of jobs, where
every job in a set p is associated a particular value
for the ith variable of the model being simulated
by the PSE, job running times between sets can
be very different. This is due to the fact that run-
ning the same PSE code or solver (i.e. job) varies
according to the variable being tested. Sometimes
important variations may occur between jobs in
the same set as well. These situations are very
undesirable since the user can not process/visualize
the outputs until all jobs finish. Therefore, giving
higher priority to jobs that are supposed to take
longer to finish may help in reducing makespan
and hence improve output processing.

CONCLUSION AND FUTURE
RESEARCH DIRECTIONS

Parameter Sweep Experiments (PSE) is a type
of numerical simulations that involves a large
number of independent jobs and requires a lot of
computing power. These jobs must be efficiently
processed in the different computing resources of
a distributed environment such as Grid Comput-
ing or Cloud Computing. Here, job scheduling
becomes crucial.

To solve this problem, many researchers have
proposed a large number of schedulers based on
Ant Colony Optimization. In this work we have
summarized different approaches in Table 1. As
the reader can see, we have described problems of
job scheduling where different authors have made
several changes to the metaheuristics to achieve
different goals, i.e. minimize the total execution
time of jobs, minimize cost, and maximize load
balancing or some combination thereof. In addi-
tion, the surveyed algorithms have been run or
simulated on two types of distributed environ-
ments, i.e. Grid Computing and Cloud Computing.
The simulation environments have been used to
assess the algorithms performance and effective-
ness for job scheduling.

438

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

An important issue to note is that most of the
papers are aimed at Grid Computing environments,
while very few are designed for Cloud Computing,
which is due to the fact that Cloud Computing is
a paradigm more recent than Grid Computing and
much less popular among scientists and engineers.
Cloud Computing, interestingly, is a paradigm that
offers the means for building the next generation
parallel computing infrastructures along with ease
of use. Although the use of Clouds finds its roots
in IT environments, the idea is gradually entering
scientific and academic ones. Even when Cloud
Computing is popular, little research has been
done with respect to evaluating the benefits of the
paradigm for scheduling and executing resource
intensive scientific applications. It is also impor-
tant to note that to date the algorithms designed
to address job scheduling for Clouds come from
adaptations of job schedulers for Grids. The reason
is that researchers have greater knowledge of the
latter (Kaur, 2011).

Since currently there is a lack of profound
studies in the literature about the viability of us-
ing Cloud Computing to execute scientific and
engineering applications from a performance
standpoint, we have presented in a previous
work (Pacini et al., 2011) an empirical study on
the employment of Cloud infrastructures to run
PSEs using scheduling policies commonly used
in Clouds (i.e. time-shared and space-shared). The
results showed when running PSEs in Clouds,
near-to-ideal speedups can be obtained. We believe
this line of research could greatly benefit from
SI-based scheduling approaches to optimize other
aspects other than speedup.

We are extending this work in several di-
rections. First, we are surveying other types of
Swarm Intelligence algorithms to job scheduling
in distributed environment such as Particle Swarm
Optimization (Kennedy and Eberhart, 1995; Ken-
nedy and Eberhart, 2001), Artificial Fish Swarm
Algorithm (Li et al., 2002) and Bee Colony Opti-

mization (Lucic and Teodorovic, 2003). We think
this will not dramatically reshape the comparison
framework depicted in Table 1, however it will
certainly enhance our analysis. Second, due to the
fact that currently there are few efforts devoted
to job scheduling in Clouds, we aim at design-
ing a new SI-based scheduler that is capable of
efficiently running PSEs in Cloud Computing
environments while addressing important aspects
such as energy consumption and PSE job priori-
ties. We are also planning to embed the resulting
scheduler into CloudSim (Calheiros et al., 2011)
in order to provide empirical evidence of its ef-
fectiveness. Eventually, we will implement the
scheduler on top of a real (not simulated) Cloud
platform, such as Eucalyptus1, OpenNebula 2and
Emotive Cloud3.

Finally, an interesting research line has recently
arisen as a consequence of the astonishingly and in-
creasing number of available mobile devices such
as smartphones. Nowadays, mobile devices have
a remarkable amount of computational resources
that allows them to execute complex applications,
such as 3D games, and to store large amounts
of data. In fact, recent work has experimentally
shown the feasibility of using such devices for
executing computing intensive scientific codes
(Rodriguez et al., 2011). Due to these advances,
emergent research lines have aimed at integrating
smartphones and other kind of mobile devices
into traditional distributed computational environ-
ments, such as clusters and Grids (Rodriguez et
al., 2011b). However, intuitively, job scheduling
in these highly heterogeneous environments is
more challenging since mobile devices rely on
unreliable wireless connections and batteries,
which is necessary to consider at the scheduling
level. This will on the other hand provide excellent
research opportunities for new schedulers based
on traditional optimization techniques as well as
SI-based ones.

439

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

REFERENCES

Alabas-Uslu, C., & Dengiz, B. (2011). A self-
adaptive local search algorithm for the classical
vehicle routing problem. Expert Systems with
Applications, 38(7), 8990–8998. doi:10.1016/j.
eswa.2011.01.116

Axelrod, R. (1997). The dissemination of culture:
A model with local convergence and global polar-
ization. The Journal of Conflict Resolution, 41(2),
203–226. doi:10.1177/0022002797041002001

Baker, M., Buyya, R., & Laforenza, D. (2002).
Grids and grid technologies for wide-area distrib-
uted computing. Software, Practice & Experience,
32, 1437–1466. doi:10.1002/spe.488

Baliga, J., Ayre, R., Hinton, K., & Tucker, R.
(2011). Green cloud computing: Balancing energy
in processing, storage and transport. Proceed-
ings of the IEEE, 99(1), 149–167. doi:10.1109/
JPROC.2010.2060451

Banerjee, S., Mukherjee, I., & Mahanti, P. (2009).
Cloud computing initiative using modified ant
colony framework. In World Academy of Science,
Engineering and Technology, (pp. 221–224).
WASET.

Basney, J., Livny, M., & Mazzanti, P. (2000).
Harnessing the capacity of computational grids for
high energy physics. In Conference on Computing
in High Energy and Nuclear Physics.

Baterina, A., & Oppus, C. (2010). Image edge
detection using ant colony optimization. WSEAS
Transactions in Signal Processing, 6(2), 58–67.

Beloglazov, A., Buyya, R., Lee, Y., & Zomaya, A.
(2011). A taxonomy and survey of energy-efficient
data centers and cloud computing systems. Ad-
vances in Computers, 82, 47–111. doi:10.1016/
B978-0-12-385512-1.00003-7

Beni, G., & Wang, J. (1989). Swarm intelligence
in cellular robotic systems. In NATO Advanced
Workshop on Robotics and Biological Systems.

Berglund, A. C., Elmroth, E., Hernandez, F.,
Sandman, B., & Tordsson, J. (2009). Combining
local and grid resources in scientific workflows
(for bioinformatics). In The 9th International
Workshop on State-of-the-Art in Scientific and
Parallel Computing, Lecture Notes in Computer
Science. Springer-Verlag.

Bianchi, L., Gambardella, L., & Dorigo, M.
(2002). An ant colony optimization approach to
the probabilistic traveling salesman problem. In
Parallel Problem Solving from Nature - PPSN
VII. In Lecture Notes in Computer Science (Vol.
2439, pp. 883–892). Berlin, Germany: Springer.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999).
Swarm intelligence: From natural to artificial
systems. Oxford University Press.

Braun, T., Siegel, H., Beck, N., Bölöni, L., Ma-
heswaran, M., & Reuther, A. (2001). A comparison
of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and Dis-
tributed Computing, 61(6), 810–837. doi:10.1006/
jpdc.2000.1714

Buyya, R., & Murshed, M. (2002). Gridsim: A
toolkit for the modeling and simulation of dis-
tributed resource management and scheduling
for grid computing. Concurrency and Computa-
tion [CCPE]. Practice and Experience, 14(13),
1175–1220. doi:10.1002/cpe.710

Buyya, R., Yeo, C., Venugopal, S., Broberg, J., &
Brandic, I. (2009). Cloud computing and emerg-
ing IT platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6), 599–616.
doi:10.1016/j.future.2008.12.001

440

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Calheiros, R., Ranjan, R., Beloglazov, A., De Rose,
C., & Buyya, R. (2011). CloudSim: A toolkit for
modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning
algorithms. Software, Practice & Experience,
41(1), 23–50. doi:10.1002/spe.995

Careglio, C., Monge, D., Pacini, E., Mateos, C.,
Mirasso, A., & Garino, C. G. (2010). Sensibilidad
de resultados del ensayo de tracción simple frente
a diferentes tamaños y tipos de imperfecciones.
Mecánica Computacional, 29(41), 4181–4197.

Carpi, L., Rosso, O., Saco, P., & Ravetti, M. G.
(2011). Analyzing complex networks evolution
through information theory quantifiers. Physics
Letters. [Part A], 375(4), 801–804. doi:10.1016/j.
physleta.2010.12.038

Catlett, C. (2005). Teragrid: A foundation for us
cyberinfrastructure. In NPC´ 05, Network and
Parallel Computing. Berlin, Germany: Springer.
doi:10.1007/11577188_1

Chandra, B., & Baskaran, R. (2012). A survey:
Ant colony optimization based recent research
and implementation on several engineering do-
main. Expert Systems with Applications, 39(4),
4618–4627. doi:10.1016/j.eswa.2011.09.076

Coveney, P., Chin, J., Harvey, M., & Jha, S. (2005).
Scientific grid computing: The first generation.
Computing in Science & Engineering, 7, 24–32.
doi:10.1109/MCSE.2005.100

Den Besten, M., Stutzle, T., & Dorigo, M. (2000).
Ant colony optimization for the total weighted
tardiness problem. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. Merelo, & H.
Schwefel (Eds.), Parallel Problem Solving from
Nature PPSN VI, volume 1917 of Lecture Notes
in Computer Science, (pp. 611–620). Berlin,
Germany: Springer.

Dorigo, M. (1992). Optimization, learning and
natural algorithms. PhD thesis, Politecnico di
Milano, Italy.

Dorigo, M., & Caro, G. D. (1999). The ant colony
optimization metaheuristic. Maidenhead, UK:
McGraw-Hill Ltd.

Dorigo, M., & Stützle, T. (2003). The ant colony
optimization metaheuristic: Algorithms, appli-
cations, and advances. In F. Glover & G. Ko-
chenberger (Eds.), Handbook of metaheuristics,
volume 57 of international series in operations
research & management science, (pp. 250–285).
New York, NY: Springer.

Etminani, K., & Naghibzadeh, M. (2007). A
min-min max-min selective algorithm for grid
task scheduling. In 3rd International Confer-
ence in Central Asia, (pp. 1–7). IEEE Computer
Society/IFIP.

Fidanova, S., & Durchova, M. (2005). Ant algo-
rithm for Grid scheduling problem. In 5th Inter-
national Conference on Large-Scale Scientific
Computing, (pp. 405–412). Springer.

Foster, I., & Iamnitchi, A. (2003). On death,
taxes, and the convergence of peer-to-peer and
grid computing. In 2nd International Workshop
on Peer-to-Peer Systems (IPTPS 2003), (pp.
118–128). Berkeley, CA.

Foster, I., & Kesselman, C. (2003). The grid:
Blueprint for a new computing infrastructure. San
Francisco, CA: Morgan Kaufmann Inc.

Foster, I., Kesselman, C., & Tuecke, S. (2001).
The anatomy of the grid: Enabling scalable vir-
tual organizations. The International Journal of
Supercomputer Applications, 15(3), 200–222.
doi:10.1177/109434200101500302

Gagliardi, F., & Begin, M. (2005). Egee - Providing
a production quality grid for e-science. In Proceed-
ings of the 2005 IEEE International Symposium
on Mass Storage Systems and Technology, (pp.
88–92). Washington, DC: IEEE Computer Society.

441

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

García Martínez, C., Cordón, O., & Herrera, F.
(2007). A taxonomy and an empirical analysis
of multiple objective ant colony optimization
algorithms for the bi-criteria tsp. European Jour-
nal of Operational Research, 180(1), 116–148.
doi:10.1016/j.ejor.2006.03.041

Garrigues, C., Robles, S., Borrell, J., & Navarro-
Arribas, G. (2010). Promoting the development of
secure mobile agent applications. Journal of Sys-
tems and Software, 83(6), 959–971. doi:10.1016/j.
jss.2009.11.001

Gropp, W., Lusk, E., & Skjellum, A. (1994). Us-
ing MPI: Portable parallel programming with the
message passing interface. MIT Press.

Gulamali, M., Mcgough, A., Newhouse, S., &
Darlington, J. (2004). Using ICENI to run pa-
rameter sweep applications across multiple Grid
resources. In Global Grid Forum 10, Case Studies
on Grid Applications Workshop.

Hao, Y., Zhang, Y., & Cao, J. (2010). Web
services discovery and rank: An information
retrieval approach. Future Generation Com-
puter Systems, 26(8), 1053–1062. doi:10.1016/j.
future.2010.04.012

Heinonen, J., & Pettersson, F. (2007). Hybrid
ant colony optimization and visibility studies ap-
plied to a job-shop scheduling problem. Applied
Mathematics and Computation, 187(2), 989–998.
doi:10.1016/j.amc.2006.09.023

Huang, G., & Wang, Q. (2011). A hybrid aco-ga
on sports competition scheduling. In Ostfeld, A.
(Ed.), Ant colony optimization - Methods and
applications (pp. 89–100). InTech.

Huang, K., & Liao, C. (2008). Ant colony opti-
mization combined with taboo search for the job
shop scheduling problem. Computers & Opera-
tions Research, 35(4), 1030–1046. doi:10.1016/j.
cor.2006.07.003

Hui, Y., Xue-Qin, S., Xing, L., & Ming-Hui, W.
(2005). An improved ant algorithm for job sched-
uling in Grid computing. In International Con-
ference on Machine Learning and Cybernetics,
Vol. 5, (pp. 2957–2961). IEEE Computer Society.

Jeyarani, R., Nagaveni, N., & Vasanth Ram, R.
(2011). Design and implementation of adaptive
power-aware virtual machine provisioner (APA-
VMP) using swarm intelligence. Future Genera-
tion Computer Systems, 28(5).

Kaur, P., & Chana, I. (2011). Enhancing grid
resource scheduling algorithms for cloud envi-
ronments. In A. Mantri, S. Nandi, G. Kumar, &
S. Kumar (Eds.), High Performance Architecture
and Grid Computing, volume 169 of Communica-
tions in Computer and Information Science, (pp.
140–144). Berlin, Germany: Springer.

Kennedy, J., & Eberhart, R. (1995). Particle swarm
optimization. In IEEE International Conference
on Neural Networks, Vol. 4, (pp. 1942–1948).
IEEE Computer Society.

Kennedy, J., & Eberhart, R. (2001). Swarm intel-
ligence. San Francisco, CA: Morgan Kaufmann
Publishers Inc.

Kousalya, K., & Balasubramanie, P. (2007). Re-
source scheduling in computational grid using
ant algorithm. In International Conference on
Computer Control and Communications, Pakistan.

Kousalya, K., & Balasubramanie, P. (2008). An
enhanced ant algorithm for grid scheduling prob-
lem. IJCSNS International Journal of Computer
Science and Network Security, 8(4), 262–271.

Kousalya, K., & Balasubramanie, P. (2009). To
improve ant algorithm’s grid scheduling using
local search. International Journal of Intelligent
Information Technology Application, 2(2), 71–79.

442

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Kuo, I., Horng, S., Kao, T., Lin, T., Lee, C., &
Chen, Y. (2010). A hybrid swarm intelligence
algorithm for the travelling salesman problem.
Expert Systems: International Journal of Knowl-
edge Engineering and Neural Networks, 27(10),
166–179. doi:10.1111/j.1468-0394.2010.00517.x

Levine, J., & Ducatelle, F. (2004). Ant colony
optimization and local search for bin packing
and cutting stock problems. The Journal of the
Operational Research Society, 55, 705–716.
doi:10.1057/palgrave.jors.2601771

Li, Q., & Zhou, M. (2011). The survey and future
evolution of green computing. In 2011 IEEE/
ACM International Conference on Green Com-
puting and Communications (Green-Com), (pp.
230–233). IEEE.

Li, X., Shao, Z., & Qian, J. (2002). An optimiz-
ing method based on autonomous animals: Fish-
swarm algorithm. Systems Engineering Theory
and Practice, 22(11), 32–38.

Liao, L., & Huang, C. (2011). Tabu search heuristic
for two-machine flowshop with batch processing
machines. Computers & Industrial Engineering,
60(3), 426–432. doi:10.1016/j.cie.2010.03.004

Liu, Y., & Zhu, H. (2010). A survey of the research
on power management techniques for high-perfor-
mance systems. Software, Practice & Experience,
40(11), 943–964. doi:10.1002/spe.952

Lorpunmanee, S., Sap, M., Abdullah, A., & Chom-
pooinwai, C. (2007). An ant colony optimization
for dynamic job scheduling in Grid environment
(pp. 314–321). World Academy of Science, En-
gineering and Technology.

Lucic, P., & Teodorovic, D. (2003). Computing
with bees: Attacking complex transportation
engineering problems. International Journal
of Artificial Intelligence Tools, 12(3), 375–394.
doi:10.1142/S0218213003001289

Ludwig, S., & Moallem, A. (2011). Swarm intelli-
gence approaches for grid load balancing. Journal
of Grid Computing, 9(3), 279–301. doi:10.1007/
s10723-011-9180-5

Ma, T., & Buyya, R. (2005). Critical-path and pri-
ority based algorithms for scheduling workflows
with parameter sweep tasks on global grids. In
Proceedings of the 17th International Symposium
on Computer Architecture on High Performance
Computing, Vol. 8, (pp. 251–258). Washington,
DC: IEEE Computer Society.

Mathiyalagan, P., Suriya, S., & Sivan, S. (2010).
Modified ant colony algorithm for Grid schedul-
ing. International Journal on Computer Science
and Engineering, 2, 132–139.

Pacini, E., Ribero, M., Mateos, C., Mirasso, A.,
& Garino, C. G. (2011). Simulation on cloud
computing infrastructures of parametric studies of
nonlinear solids problems. In F. Cipolla-Ficarra et
al., (Eds.), Advances in New Technologies, Interac-
tive Interfaces and Communicability (ADNTIIC
2011), (pp. 56–68). Huerta Grande, Córdoba,
Argentina: Blue Herons.

Palmieri, F., & Castagna, D. (2007). Swarm-based
distributed job scheduling in next-generation grids.
In Elleithy, K. (Ed.), Advances and innovations
in systems, computing sciences and software en-
gineering (pp. 137–143). Netherlands: Springer.
doi:10.1007/978-1-4020-6264-3_25

Pordes, R., Petravick, D., Kramer, B., Olson, D.,
Livny, M., Roy, A., … Quick, R. (2007). The
open science grid. Journal of Physics: Conference
Series, 78(1), 012–057.

Ritchie, G., & Levine, J. (2004). A hybrid ant
algorithm for scheduling independent jobs in
heterogeneous computing environments. In Pro-
ceedings of the 23rd Workshop of the UK Planning
and Scheduling Special Interest Group.

443

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Rizzoli, A., Oliverio, F., Montemanni, R., &
Gambardella, M. (2004). Ant colony optimisa-
tion for vehicle routing problems: From theory
to applications. Galleria Rassegna Bimestrale
Di Cultura, 9(1), 1–50.

Rodriguez, J. M., Mateos, C., & Zunino, A. (2011).
Are smartphones really useful for scientific com-
puting? In F. V. Cipolla-Ficarra et al., (Eds.), Ad-
vances in New Technologies, Interactive Interfaces
and Communicability (ADNTIIC 2011), Lecture
Notes in Computer Science, (pp. 35–44). Huerta
Grande, Córdoba, Argentina, December 2011.

Rodriguez, J. M., Zunino, A., & Campo, M. (2011).
Introducing mobile devices into Grid systems: A
survey. International Journal of Web and Grid
Services, 7(1). doi:10.1504/IJWGS.2011.038386

Ruay-Shiung, C., Jih-Sheng, C., & Po-Sheng, L.
(2009). An ant algorithm for balanced job schedul-
ing in grids. Future Generation Computer Systems,
25, 20–27. doi:10.1016/j.future.2008.06.004

Samples, M., Daida, J., Byom, M., & Pizzimenti,
M. (2005). Parameter sweeps for exploring GP
parameters. In Conference on Genetic and Evolu-
tionary Computation, GECCO ’05, (pp. 212–219).
New York, NY: ACM Press.

Sathish, K., & Reddy, A. R. M. (2008). Enhanced
ant algorithm based load balanced task scheduling
in grid computing. IJCSNS International Jour-
nal of Computer Science and Network Security,
8(10), 219–223.

Srinivasan, T., Siddharth, J., Jayesh, S., & Chan-
drasekhar, A. (2005). A comprehensive architec-
tural framework for task management in scalable
computational grids. In Annual National level
Technical Symposium conducted by the Computer
Science and Engineering Association of the De-
partment of Computer Science and Engineering
(DCSE), (pp. 14–15). Chennai, India: College of
Engineering, Anna University.

Strogatz, S. (2001). Exploring complex
networks. Nature, 410(6825), 268–276.
doi:10.1038/35065725

Stützle, T., & Hoos, H. (2000). Max-min ant
system. Future Generation Computer Systems,
16(8), 889–914.

Sun, C., Kim, B., Yi, G., & Park, H. (2004). A
model of problem solving environment for inte-
grated bioinformatics solution on grid by using
condor. In Grid and Cooperative Computing,
(pp. 935–938).

Taylor, I., Deelman, E., Gannon, D., & Shields,
M. (2006). Workflows for e-science: Scientific
workflows for grids. New York, NY: Springer-
Verlag Inc.

Thain, D., Tannenbaum, T., & Livny, M. (2005).
Distributed computing in practice: The Condor
experience. Concurrency and Computation,
17(2-4), 323–356. doi:10.1002/cpe.938

Vecchiola, C., Pandey, S., & Buyya, R. (2009).
High-performance cloud computing: A view of
scientific applications. In Proceedings of the 2009
10th International Symposium on Pervasive Sys-
tems, Algorithms, and Networks, ISPAN ́ 09, (pp.
4–16). Washington, DC: IEEE Computer Society.

Vesel, A., & Zerovnik, J. (2000). How good can
ants color graphs? Journal of Computing and
Information Technology, 8, 131–136. doi:10.2498/
cit.2000.02.04

Wang, L., Tao, J., Kunze, M., Castellanos, A. C.,
Kramer, D., & Karl, W. (2008). Scientific cloud
computing: Early definition and experience. In
10th IEEE International Conference on High
Performance Computing and Communications,
(pp. 825–830). Washington, DC: IEEE Computer
Society.

444

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Woeginger, G. (2003). Exact algorithms for np-
hard problems: A survey. In M. Junger, G. Reinelt,
& G. Rinaldi (Eds.), Combinatorial Optimization
- Eureka, You Shrink! volume 2570 of Lecture
Notes in Computer Science, (pp. 185–207). Berlin,
Germany: Springer.

Wozniak, J., Striegel, A., Salyers, D., & Izaguirre,
J. (2005). GIPSE: Streamlining the management
of simulation on the Grid. In 38th Annual Simula-
tion Symposium, (pp. 130–137).

Xu, Z., Hou, X., & Jizhou, S. (2003). Ant algo-
rithm-based task scheduling in grid computing.
In CCECE 2003 - CCGEl 2003, (pp. 1107–1110).
Montreal.

Yawei, L., & Zhiling, L. (2004). A survey of load
balancing in grid computing (pp. 280–285). CIS.

Youn, C., & Kaiser, T. (2010). Management of
a parameter sweep for scientific applications on
cluster environments. Concurrency and Com-
putation, 22, 2381–2400. doi:10.1002/cpe.1563

Yun-Chia, L., & Smith, A. (2004). An ant colony
optimization algorithm for the redundancy al-
location problem (RAP). IEEE Transactions
on Reliability, 53(3), 417–423. doi:10.1109/
TR.2004.832816

Zehua, Z., & Xuejie, Z. (2010). A load balancing
mechanism based on ant colony and complex net-
work theory in open Cloud Computing federation.
In 2nd International Conference on Industrial
Mechatronics and Automation, (pp. 240–243).
IEEE Computer Society.

Zhang, Q., & Theodoropoulos, G. (2003). Towards
an asynchronous MIPS processor. In A. Omondi
& S. Sedukhin, (Eds.), Advances in Computer
Systems Architecture, volume 2823 of Lecture
Notes in Computer Science, (pp. 137–150). Berlin,
Germany: Springer.

ADDITIONAL READING

Afshar, M. (2010). A parameter free continuous
ant colony optimization algorithm for the optimal
design of storm sewer networks: Constrained and
unconstrained approach. Advances in Engineer-
ing Software, 41(2), 188–195. doi:10.1016/j.
advengsoft.2009.09.009

AlRashidi, M., & El-Hawary, M. (2009). A sur-
vey of particle swarm optimization applications
in electric power systems. IEEE Transactions
on Evolutionary Computation, 13(4), 913–918.
doi:10.1109/TEVC.2006.880326

Biswal, B., Dash, P., & Mishra, S. (2011). A hy-
brid ant colony optimization technique for power
signal pattern classification. Expert Systems with
Applications, 38(5), 6368–6375. doi:10.1016/j.
eswa.2010.11.102

Bonabeau, E., Corne, D., & Poli, R. (2010).
Swarm intelligence: The state of the art special
issue of natural computing. Natural Computing,
9(3), 655–657. doi:10.1007/s11047-009-9172-6

Cai, Y. (2010). Artificial fish school algorithm
applied in a combinatorial optimization problem.
[IJISA]. International Journal of Intelligent Sys-
tems and Applications, 2(1), 37–43. doi:10.5815/
ijisa.2010.01.06

Chandra-Mohan, B., & Baskaran, R. (2012). A
survey: Ant colony optimization based recent re-
search and implementation on several engineering
domain. Expert Systems with Applications, 39(4),
4618–4627. doi:10.1016/j.eswa.2011.09.076

Ciruela Martín, S. (2008) La sabiduría de la na-
turaleza. Ciencia Cognitiva – Revista Electrónica
de Divulgación, 2, 81–83.

445

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Díaz, J., Reyes, S., Badia, R., & No, A. N., &
noz Caro, C. M. (2010). A general model for the
generation and scheduling of parameter sweep
experiments in computational grid environments.
Procedia Computer Science, 1(1), 565–572.
doi:10.1016/j.procs.2010.04.060

Dougherty, B., White, J., & Schmidt, D. (2012).
Model-driven auto-scaling of green cloud com-
puting infrastructure. Future Generation Com-
puter Systems, 28(2), 371–378. doi:10.1016/j.
future.2011.05.009

Foster, I., Yong, Z., Raicu, I., & Lu, S. (2008).
Cloud computing and grid computing 360-degree
compared. In Grid Computing Environments
Workshop, (pp. 1–10). IEEE.

Huang, Y., Bessis, N., Norrington, P., Kuonen, P.,
& Hirsbrunner, B. (2011). (in press). Exploring
decentralized dynamic scheduling for grids and
clouds using the community-aware scheduling
algorithm. Future Generation Computer Systems.
doi:10.1016/j.future.2011.05.006

Kameyama, K. (2009). Particle swarm optimiza-
tion - A survey. IEICE Transactions on Information
and Systems, E92.D(7), 1354–1361.

Karaboga, D., & Akay, B. (2009). A survey:
algorithms simulating bee swarm intelligence.
Artificial Intelligence Review, 31(1-4), 61–85.
doi:10.1007/s10462-009-9127-4

Kolias, C., Kambourakis, G., & Maragoudakis, M.
(2011). Swarm intelligence in intrusion detection:
A survey. Computers & Security, 30(8), 625–642.
doi:10.1016/j.cose.2011.08.009

Lee, Y., Leu, S., & Chang, R. (2011). Improving
job scheduling algorithms in a grid environment.
Future Generation Computer Systems, 27(8),
991–998. doi:10.1016/j.future.2011.05.014

Mateescu, G., Gentzsch, W., & Ribbens, C.
(2011). Hybrid computing – Where HPC meets
grid and cloud computing. Future Generation
Computer Systems, 27(5), 440–453. doi:10.1016/j.
future.2010.11.003

Neri, F., & Cotta, C. (2011). Memetic algorithms
and memetic computing optimization: A literature
review. Swarm and Evolutionary Computation,
2(1).

Nurmi, D., Wolski, R., Grzegorczyk, C., Ober-
telli, G., Soman, S., Youseff, L., & Zagorodnov,
D. (2009). The eucalyptus open-source cloud-
computing system. In F. Cappello, C. Wang, &
R. Buyya (Eds.), 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid,
(pp. 124–131). IEEE Computer Society.

Pedemonte, M., Nesmachnow, S., & Cancela, H.
(2011). A survey on parallel ant colony optimiza-
tion. Applied Soft Computing, 11(8), 5181–5197.
doi:10.1016/j.asoc.2011.05.042

Razavi, S., & Jalali-Farahani, F. (2010). Optimi-
zation and parameters estimation in petroleum
engineering problems using ant colony algorithm.
Journal of Petroleum Science Engineering, 74(3-
4), 147–153. doi:10.1016/j.petrol.2010.08.009

Rodero-Merino, L., Vaquero, L., Gil, V., Galán,
F., Fontán, J., Montero, R., & Llorente, I. (2010).
From infrastructure delivery to service manage-
ment in clouds. Future Generation Computer
Systems, 26(8), 1226–1240. doi:10.1016/j.fu-
ture.2010.02.013

Schwiegelshohn, U., Badia, R., Bubak, M., Dan-
elutto, M., Dustdar, S., & Gagliardi, F. (2010).
Perspectives on grid computing. Future Gen-
eration Computer Systems, 26(8), 1104–1115.
doi:10.1016/j.future.2010.05.010

446

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Smanchat, S., Indrawan, M., Ling, S., Enticott,
C., & Abramson, D. (2011). A scheduler based
on resource competition for parameter sweep
workflow. Procedia Computer Science, 4(0),
176–185. doi:10.1016/j.procs.2011.04.019

Wan, Y., Pei, T., Zhou, C., Jiang, Y., Qu, C., & Qiao,
Y. (2012). Acomcd: A multiple cluster detection
algorithm based on the spatial scan statistic and
ant colony optimization. Computational Statistics
& Data Analysis, 56(2), 283–296. doi:10.1016/j.
csda.2011.08.001

Wu, S., & Banzhaf, W. (2010). The use of compu-
tational intelligence in intrusion detection systems:
A review. Applied Soft Computing, 10(1), 1–35.
doi:10.1016/j.asoc.2009.06.019

Zhou, A., Qu, B., Li, H., Zhao, S., Suganthan, P.,
& Zhang, Q. (2011). Multiobjective evolutionary
algorithms: A survey of the state of the art. Swarm
and Evolutionary Computation, 1(1), 32–49.
doi:10.1016/j.swevo.2011.03.001

KEY TERMS AND DEFINITIONS

Ant Colony Optimization (ACO): Is a class
of optimization algorithms modeled on the ac-
tions of an ant colony. ACO methods are useful in
problems that need to find paths to goals. Artificial
‘ants’ locate optimal solutions by moving through
a parameter space representing all possible solu-
tions. Real ants lay down pheromones directing
each other to resources while exploring their en-
vironment. The simulated ‘ants’ similarly record
their positions and the quality of their solutions,
so that in later simulation iterations more ants
locate better solutions.

Cloud Computing: A Cloud is a type of paral-
lel and distributed system consisting of a collec-
tion of inter-connected and virtualized computers
that are dynamically provisioned and presented
as one or more unified computing resource(s)
based on service-level agreements established

through negotiation between the service provider
and consumers. Cloud Computing is the delivery
of computing as a service rather than a product,
whereby shared resources, software, and informa-
tion are provided to computers and other devices
as a utility over a network (typically the Internet).

Grid Computing: Is a model of distributed
computing that uses geographically and admin-
istratively disparate resources. A Grid is a type
of parallel and distributed system that enables
the sharing, selection, and aggregation of geo-
graphically distributed ‘autonomous’ resources
dynamically at runtime depending on their avail-
ability, capability, performance, cost, and users’
quality-of-service requirements. Individual users
can access computers and data transparently,
without having to consider location, operating
system, account administration, and other details.

Job Scheduling: Is the process of allocating
a set of jobs belonging to an application into
available computing resources. The main objec-
tive is achieving a high system throughput while
matching application needs with the available
computing resources.

Load Balancing: Is a computer methodology
to distribute workload across multiple computers
to achieve optimal resource utilization, maximize
throughput, minimize response time, and avoid
overload. Load balancing divides the amount of
work that a computer has to do between two or
more computers so that more work gets done in
the same amount of time and, in general, all users
get served faster.

Makespan: Is defined as the amount of time,
from start to finish for completing a set of jobs,
i.e. the maximum completion time of all jobs.

Parameter Sweep: a parameter sweep is a
type of experiment in which multiple datapoints
are examined by executing an algorithm numerous
times with different parameter configurations.

Swarm Intelligence (SI): Is a discipline that
deals with natural and artificial systems composed
of many individuals that coordinate using decen-
tralized control and self-organization. In particular,

447

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

SI focuses on the collective behaviors that result
from the local interactions of the individuals with
each other and with their environment. Examples
of systems studied by swarm intelligence are
colonies of ants and termites, schools of fish,
flocks of birds, herds of land animals.

ENDNOTES

1. http://www.eucalyptus.com/
2. http://www.opennebula.org
3. http://www.emotivecloud.net

