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ABSTRACT

Scientists and engineers are more and more faced to the need of computational power to satisfy the ever-
increasing resource intensive nature of their experiments. An example of these experiments is Parameter 
Sweep Experiments (PSE). PSEs involve many independent jobs, since the experiments are executed under 
multiple initial configurations (input parameter values) several times. In recent years, technologies such 
as Grid Computing and Cloud Computing have been used for running such experiments. However, for 
PSEs to be executed efficiently, it is necessary to develop effective scheduling strategies to allocate jobs 
to machines and reduce the associated processing times. Broadly, the job scheduling problem is known 
to be NP-complete, and thus many variants based on approximation techniques have been developed. In 
this work, the authors conducted a survey of different scheduling algorithms based on Swarm Intelligence 
(SI), and more precisely Ant Colony Optimization (ACO), which is the most popular SI technique, to 
solve the problem of job scheduling with PSEs on different distributed computing environments.
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INTRODUCTION

Parameter Sweep Experiments, or PSEs for short, 
is a very popular way of conducting simulation-
based experiments among scientists and engineers 
through which the same application code is run 
several times with different input parameters 
resulting in different outputs (Youn and Kaiser, 
2010). Representative examples of PSEs are 
sensitivity studies of results in terms of defined 
parameter changes like is the case of imperfec-
tions in the simulation of simple tension test, or 
the study of buckling of imperfect columns.

From a purely software perspective, most PSEs 
are cluster friendly in the sense that individual 
inputs of an experiment can be handled by inde-
pendent jobs. Therefore, using a software platform 
such as Condor (Thain et al., 2005), which is able 
to exploit the distributed nature of a computer 
cluster, allows these jobs to be run in parallel. 
In this way, not only PSEs execute faster, but 
also experiments more computing intensive can 
be computed, and hence more complex simula-
tions can be performed. The same idea has been 
systematically applied to execute PSEs on Grids 
(Foster and Kesselman, 2003), which are basically 
infrastructures that connect clusters via wide-area 
connections to increase computational power. To 
this end, software platforms designed to exploit 
Grids provide the illusion of the existence of a 
large supercomputer, which in turn virtualizes 
and combines the hardware capabilities of many 
much less powerful, geographically-dispersed 
machines to run resource intensive applications 
(Coveney et al., 2005).

On the downside, for users not proficient in 
distributed technologies, manually configuring 
PSEs is tedious, time-consuming and error-prone. 
As a consequence, users typically waste precious 
time that could be instead invested into analyz-
ing results. The availability of elaborated GUIs 
-especially for Grids- that help in automating an 
experimentation process has in part mitigated this 

problem. However, the highly complex nature 
of today’s experiments and thus their associated 
computational cost greatly surpasses the time 
savings that can be delivered by this automation.

A recent distributed computing paradigm that 
is rapidly gaining momentum is Cloud Computing 
(Buyya et al., 2009), which bases on the idea of 
providing an on demand computing infrastructure 
to end users. Typically, users exploit Clouds by 
requesting from them one or more machine im-
ages, which are virtual machines running a de-
sired operating system on top of several physical 
machines (e.g. a datacenter). Interaction with a 
Cloud is performed by using Cloud services, which 
define the functional capabilities of a Cloud, i.e. 
machine image management, access to software/
data, security, and so on.

Due to the fact that PSEs perform the process-
ing of a lot of jobs, it is necessary to address how 
they will be executed in distributed computing 
environments, which is a complex endeavor. For 
jobs to be properly executed, it is necessary to 
allocate them to different resources reasonably 
and optimally. This problem is known as job 
scheduling and is an NP-complete problem, which 
aims to minimize the overall execution time of 
all jobs. Job scheduling is one of the bottlenecks 
in distributed computing.

In the last ten years or so, Swarm Intelligence 
has received increasing attention in the research 
community. Swarm Intelligence refers to the col-
lective behavior that emerges from a swarm of 
social insects (Bonabeau et al., 1999). Social insect 
colonies solve complex problems collectively by 
intelligent methods. These problems are beyond 
the capabilities of each individual insect, and the 
cooperation among them is largely self-organized 
without any supervision. Through studying social 
insect colonies behaviors such as ant colonies, 
researchers have proposed some algorithms or 
theories for combinational optimal problems. 
Moreover, job scheduling in Grids or Clouds is 
also a combinational optimal problem.
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Motivated by these facts, we conducted a 
literature review of job scheduling techniques 
based on Ant Colony Optimization (Dorigo, 1992) 
algorithms. The inspiring source of ACO is the 
foraging behavior of real ants. ACO is one of 
the most popular optimization techniques in the 
area of Swarm Intelligence (García Martínez et 
al., 2007; Huang and Wang, 2011; Chandra and 
Baskaran, 2012) and the most popular optimization 
technique among bioinspired techniques. ACO has 
been extensively studied and deployed for solving 
problems as varied as Vehicular Routing Problem 
(VRP) (Rizzoli et al., 2004), Single Machine Total 
Weighted Tardiness Problem (SMTWTP) (Den 
Besten et al., 2000), Graph Colouring Problem 
(Vesel and Zerovnik, 2000), and so on. These facts 
have been attracting the attention of researchers 
studying distributed scheduling.

The rest of the work is organized as follows. 
The next Section provides more details on the 
concept of Parameter Sweep Experiments. Section 
“Distributed Computing Infrastructures” describes 
the two distributed environments commonly used 
today, namely Grids and Clouds. Later, Section 
“Swarm Intelligence” explains the concepts un-
derpinning Swarm Intelligence and Ant Colony 
Optimization. Section “Related work of job sched-
uling based on ACO” presents related works of 
job scheduling based on ACO. Section “Analysis 
of ACO-based Scheduling Approaches” present 
a uniform and organized view of the surveyed 
works. Finally, Section “Conclusions and Future 
Research Directions” concludes this work and 
describes prospective future works.

BACKGROUND

Parameter Sweep Experiments (PSEs) is an experi-
mental simulation-based methodology involving 
running the same application code several times 
with different input parameters to derive differ-
ent outputs (Youn and Kaiser, 2010). Running 
PSEs requires managing many independent jobs 

(Samples et al., 2005), since the experiments are 
executed under multiple initial configurations 
(input parameter values) a large number of times, 
to locate a particular point in the parameter space 
that satisfies certain user criteria. In addition, dif-
ferent PSEs have different number of parameters.

Scientists involved in this type of experiments 
need a computing environment that delivers large 
amounts of computational power over a long pe-
riod of time. In general terms, such an environment 
is called a High Throughput Computing (HTC) 
environment. In HTC, jobs are dispatched to run 
independently on multiple computers at the same 
time. Interestingly, PSEs find their application in 
diverse scientific areas such as Bioinformatics 
(Sun et al., 2004), Earth Sciences (Gulamali et 
al., 2004), High-Energy Physics (Basney et al., 
2000), Molecular Science (Wozniak et al., 2005) 
and even Social Sciences (Axelrod, 1997). How-
ever, to deal with these problems, it is necessary 
large amounts of computational power.

A concrete example of PSE is the one presented 
by Careglio et al. (Careglio et al., 2010), which 
consists in analyzing the influence of size and type 
of geometric imperfections in the response of a 
simple tensile test on steel bars subject to large 
deformations. To conduct the study, the authors 
numerically simulate the test by varying some 
parameters of interest, namely using different 
sizes and types of geometric imperfections. By 
varying these parameters different study cases 
were obtained, which was necessary to analyze 
and run on different machines in parallel.

Due to the fact that PSEs involve three broad 
activities, namely the execution of a potentially 
large computation, the grouping of the results, 
and their interpretation afterwards, PSEs can be 
carried out by exploiting computational workflows 
(Taylor et al., 2006). Therefore, PSEs, which are 
embarrassingly parallel problems, are well suited 
to HTC environments where large numbers of 
resources are available. To this end, PSEs require 
a suitable partition of the input data where each 
partition is assigned to a different job (or sub 
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workflow) (Berglund et al., 2009; Ma and Buyya, 
2005). Even though PSEs can be done without 
workflows, data management in the client is sim-
plified when the parameter sweep study can be 
treated as several sub workflows. This increased 
abstraction is beneficial both from a usability point 
of view (i.e. results interpretation becomes faster) 
and of course from a performance standpoint.

When designing PSEs, there are several issues 
to tackle. On one hand, it is necessary to generate 
the set of all possible combinations of input param-
eters. This is a time-consuming task, which should 
be automated. However, it is not straightforward 
to provide a general solution, since each problem 
has a different number of parameters and each 
of them has its own variation interval. Another 
issue, which is in part a consequence of the first 
issue, relates to scheduling PSEs on distributed 
environments, which is a complex activity. For 
this reason, it is necessary to develop efficient 
scheduling strategies to appropriately allocate the 
workload and reduce the associated computation 
time. The term scheduling refers to the way jobs 
are assigned to run on the available CPUs, since 
there are typically many more jobs running than 
available CPUs. This assignment is carried out 
by software known as a scheduler and dispatcher. 
The demand for scheduling is to achieve high per-
formance computing. The scheduling problem is 
defined NP-complete problem (Woeginger, 2003) 
and it is not trivial.

In PSEs scheduling problems, in order to 
minimize the completion time of jobs (makespan) 
it is essential a correct assignment of jobs so that 
computer loads and communication overheads 
are well balanced (load balancing). The term 
“makespan” means to find a sequence of jobs 
that minimizes the finishing time of the last job 
in the system, or in other words the maximum 
completion time of all jobs. A formal definition 
of makespan is as follows: given n jobs with 
processing times {p1, p2, ... pn} and m machines 
with speeds {s1, s2, …, sm} we want to assign 
the jobs to machines to minimize the maximum 

finish time. On the other hand, load balancing 
(Yawei and Zhiling, 2004) refers to the technique 
that tries to distribute work load between several 
computer resources (CPUs, network interfaces, 
hard drives, and other resources) in order to get 
an optimal resource utilization, throughput, or 
response. A load balancing mechanism aims to 
equally distribute the load on each computing 
node, maximizing their utilization and minimiz-
ing the total job execution time. To achieve these 
goals, any load balancing mechanism should be 
fair in distributing the load across the computing 
nodes. Note that these two concepts are mutually 
independent, and in fact represent a trade-off, 
since a good load balancing does not always lead 
to a minimization of completion time of all jobs 
and viceversa.

Distributed Computing 
Infrastructures

Years ago, Grid Computing (Foster and Kessel-
man, 2003) and more recently Cloud Computing 
technologies (Buyya et al., 2009) have been in-
creasingly used for running parameter sweep ap-
plications. PSEs are well suited for these environ-
ments since PSEs are inherently parallel problems 
with no or little data transfer between nodes during 
computations. Since many applications require 
a great need for calculation, these applications 
have been initially targeted at dedicated High 
Throughput Computing (HTC) infrastructures 
such as clusters or pools of networked machines, 
managed by some software or platform such as 
Condor (Thain et al., 2005).

Then, with the advent of Grid Computing new 
opportunities were available to scientists, since 
Grids offered the computational power required 
to perform even larger experiments. Grid Com-
puting introduced new facilities such as dynamic 
service discovery, the ability of relying on a large 
number of resources belonging to different ad-
ministrative domains, and finding the best set of 
machines that meet an application’s requirements. 
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The use of Grid Computing in scientific applica-
tions (Coveney et al., 2005) has been successful 
in many international projects and has led to 
the establishment of world-wide infrastructures 
available for computational science (Pordes et al., 
2007; Gagliardi and Begin, 2005; Catlett, 2005).

Cloud Computing is a natural evolution of the 
widespread adoption of virtualization, service-
oriented architectures, and utility computing 
(Buyya et al., 2009). Basically, technological 
details are abstracted from end-users, who no 
longer have need for expertise in, or control over, 
the technology infrastructure “in the cloud” that 
supports them. Cloud Computing describes a new 
supplement, consumption, and delivery model for 
IT services based on Internet protocols, which 
typically involves provisioning of dynamically 
scalable and often virtualized resources.

Due to the fact that Grid Computing and 
Cloud Computing are nowadays the most used 
Infrastructures to execute scientific applications, 
an overview of each one is provided next.

Grid Computing

The term “Grid Computing” originated in the early 
1990s as a metaphor of making computer power 
as easy to access an electric power Grid (Foster 
and Kesselman, 2003). Grid Computing can be 
defined as a type of parallel and distributed system 
that enables the sharing, selection, and aggregation 
of geographically distributed autonomous and 
heterogeneous resources dynamically at runtime 
depending on their availability, capability, perfor-
mance, cost, and user’s Quality-of-Service (QoS) 
requirements (Baker et al., 2002).

A Grid, or the kind of distributed infrastructure 
that is built by following the Grid Computing 
paradigm, is a form of distributed computing 
whereby a “super virtual computer” is composed 
of many networked, loosely coupled computers 
acting together to execute very large jobs. As such, 
a Grid is a shared environment implemented via 
the deployment of a persistent, standards-based 

service infrastructure that supports the creation 
of, and resource sharing within, distributed 
communities. Resources can be computers, stor-
age space, instruments, software applications, 
network interfaces and data, all connected to a 
network (private, public or the Internet) through 
a middleware software layer that provides basic 
services for security, monitoring, resource man-
agement, and so forth. Resources owned by various 
administrative organizations are shared under lo-
cally defined policies that specify what is shared, 
who is allowed to access what, and under what 
conditions (Foster and Iamnitchi, 2003). Basi-
cally, the problem that underlies the Grid concept 
is achieving coordinated resource sharing and 
problem solving in dynamic, multi-institutional 
Virtual Organizations (VO) (Foster et al., 2001) 
where each VO can consist of either physically 
distributed institutions or logically related proj-
ects/groups. The goal of such an infrastructure is 
to enable federated resource sharing in dynamic, 
distributed environments.

Grid Computing has been applied to compu-
tationally intensive scientific, mathematical, and 
academic problems, and it is used in commercial 
enterprises for such diverse applications as drug 
discovery, economic forecasting, seismic analysis, 
and back office data processing in support for 
e-commerce and Web services. Grids provide a 
means for offering information technology as a 
utility for commercial and non-commercial clients, 
with those clients paying only for what they use, 
as with electricity or water.

Despite the widespread use of Grid technolo-
gies in scientific computing, as demonstrated by 
the large amount of projects served by Grid 
Computing (Vecchiola et al., 2009), some issues 
still make the access to this technology not easy 
for disciplinary or domain users. For example, 
operationally, some Grids are bureaucratic, since 
research groups have to submit a proposal describ-
ing the type of research they want to carry out 
prior to executing their experiments.
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Other usage-related issues involve technical 
hurdles. In most cases scientific Grids feature a 
prepackaged environment in which applications 
will be executed. Then, specific tools and APIs 
have to be used, and there could be limitations on 
the hosting operating systems or on the services 
offered by the runtime environment. On the other 
hand, although Grid Computing favors dynamic 
resource discovery and provision of a wide vari-
ety of runtime environments for applications, in 
practice, a limited set of options are available for 
scientists, which are not in addition elastic enough 
to cover their needs. An illustrative example 
involves the use of specific software that could 
not be available in the runtime environment were 
applications are executed. In general, applications 
that run on scientific Grids are implemented as 
bag of jobs applications, workflows, and MPI 
(Message Passing Interface) (Gropp et al., 1994) 
parallel jobs. Some scientific experiments could 
not fit into these models and therefore have to be 
reorganized or redesigned to exploit a particular 
scientific Grid.

Cloud Computing

All in all, while the aforementioned bureaucratic 
issues can be a minor problem, the technical ones 
could constitute a fundamental obstacle for next 
generation scientific computing. Cloud Comput-
ing (Buyya et al., 2009), the current emerging 
trend in delivering IT services, has been recently 
proposed to address the aforementioned problems. 
By means of virtualization technologies, Cloud 
Computing offers to end users a variety of services 
covering the entire computing stack, from the 
hardware to the application level, by charging them 
on a pay per use basis. This makes the spectrum 
of options available to scientists, and particularly 
PSEs users, wide enough to cover any specific need 
from their research. Another important feature, 
from which scientists can benefit, is the ability 
to scale up and down the computing infrastruc-

ture according to the application requirements 
and the budget of users. By using Cloud-based 
technologies scientists can have easy access to 
large distributed infrastructures and are allowed 
to completely customize their execution environ-
ment, thus deploying the most appropriate setup 
for their experiments. Moreover, by renting the 
infrastructure on a pay per use basis, they can have 
immediate access to required resources without 
any capacity planning and they are free to release 
resources when these latter are no longer needed.

As suggested, central to Cloud Computing is 
the concept of virtualization, i.e. the capability of 
a software system of emulating various operating 
systems. By means of this support, scientists can 
exploit Clouds by requesting from them machine 
images, or virtual machines that emulate any oper-
ating system on top of several physical machines, 
which in turn run host operating systems. Usually, 
Clouds are established using the machines of a 
datacenter for executing user applications while 
they are idle.

Interaction with a Cloud environment is per-
formed via Cloud services (Buyya et al., 2009), 
which define the functional capabilities of a 
Cloud, i.e. machine image management, access 
to software/data, security, and so forth. Cloud 
services are commonly exposed to the outer world 
via Web Services (Hao et al., 2010), i.e. reusable 
software components that can be remotely invoked 
by applications implemented in any programming 
language. By using these services, a user (scien-
tific) application can allocate machine images, 
upload input data, execute, and download output 
(result) data for further analysis. Finally, to offer 
on demand, shared access to their underlying 
physical resources, Clouds have the ability to 
dynamically allocate and deallocate machines 
images. Besides, and also important, Clouds can 
coallocate N machines images on M physical 
machines, with N ≥ M, thus concurrent user-wide 
resource sharing is ensured. These relationships 
are depicted in Figure 1.
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In summary, a Cloud gives users the illusion 
of a single, powerful supercomputer in which 
complex applications can be run. Besides, the 
software stack of the infrastructure can be fully 
adapted and configured according to users’ needs. 
This provides excellent opportunities for scientists 
and engineers to run applications that demand by 
nature a huge amount of computational resources 
-i.e. CPU cycles, memory and storage- and rely 
on specific software libraries.

With everything mentioned so far, there is 
a great consensus on the fact that from the per-
spective of domain scientists the complexity of 
traditional distributed and parallel computing 
environments such as clusters and particularly 
Grids should be hidden, so that domain scientists 
can focus on their main concern, which is per-
forming their experiments. As a result, the use of 
Cloud Computing infrastructures is a good choice 
for running scientific applications. Precisely, for 
parametric studies, or scientific applications in 
general, the value of Cloud Computing as a tool 
to execute complex applications has been already 
recognized within the scientific community (Wang 
et al., 2008).

While Cloud Computing helps scientific users 
to run complex applications, job management is 
a key concern in Cloud Computing that must be 
addressed. Broadly, job scheduling is a mecha-
nism that maps jobs to appropriate resources to 
execute, and the delivered efficiency will directly 
affect the performance of the whole Cloud Com-
puting environment. Particularly, the scheduling 
algorithms for distributed systems have the goal 
of dividing a single computation into several jobs 
and submitting these latter to resources, while 
maximizing resource utilization and minimizing 
the total execution time (makespan) of all jobs. 
As job scheduling is an NP-complete optimization 
problem, several heuristic algorithms have been 
proposed in the literature.

Moreover, as artificial life techniques have 
shown to be useful in optimization problems, they 
are good candidates to optimize in principle load 
balancing and minimize the total execution time 
(makespan) of jobs in PSE environments. The 
advantage of these techniques derives from their 
ability to explore solutions in large search spaces 
in a very efficient way.

Figure 1. Cloud computing: High-level view
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Swarm intelligence

As suggested earlier, Swarm Intelligence (SI) 
techniques are increasingly used to solve opti-
mization problems. The expression Swarm Intel-
ligence was introduced by Gerardo Beni and Jing 
Wang in 1989 in the context of cellular robotic 
systems (Beni and Wang, 1989) and concerns a 
type of problem solving skill inspired by nature. 
Swarm Intelligence (Bonabeau et al., 1999) is 
the discipline that deals with natural and artificial 
systems composed of many individuals that co-
ordinate themselves using decentralized control 
and self-organization. In particular, the discipline 
focuses on the collective behaviors that result 
from the local interactions of the individuals with 
each other and with their environment. Examples 
of systems studied by SI are ants colonies, fish 
schools, flocks of birds, and herds of land ani-
mals, where the whole group of agents perform 
a desired chore (i.e. feeding), which may not be 
made individually. Figure 2 shows some examples 
of natural systems which are inspired by Swarm 
Intelligence. For example, an individual ant is 
relatively unintelligent, but when they are part of 
a colony, complex group behavior emerges from 
the interactions of individuals -such as searching 
for food- who exhibit simple behaviors by them-
selves. On the other hand, a fish makes dynamic 
decisions to swim in one direction or another. At 
beginning, a fish swims behind another perform-
ing various maneuvers, but only up to a certain 
point. If the first fish swims right passing food, 

the other members of the school would listen to 
other instincts instead.

Swarm intelligence is then the emergent col-
lective intelligence of groups of simple autono-
mous agents, where an autonomous agent is a 
subsystem that interacts with its environment, 
which probably consists of other agents, but acts 
relatively independently from all other agents. 
The autonomous agent does not follow commands 
from a leader, or some global plan. For example, 
for a bird to participate in a flock, it only adjusts 
its movements to coordinate with the movements 
of its flock mates, typically its neighbors that are 
close to the bird in the flock. A bird in a flock 
simply tries to stay close to its neighbors, but 
avoid collisions with them. No bird takes the 
leadership role since there is no lead bird.

Any bird can fly in the front, center and back of 
the “swarm”. Swarm behavior helps birds taking 
advantage of several things including protection 
from predators (especially for birds in the middle 
of the flock), and searching for food (essentially 
each bird is exploiting the eyes of every other 
bird). The essential principle in SI is cooperation 
and exchange of knowledge between individual 
information units.

An SI system has the following properties:

• It is composed of many individuals;
• The individuals are relatively homoge-

neous, i.e. they are either all identical or 
they belong to a few typologies;

Figure 2. Examples of natural systems
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• The interactions among the individuals 
are based on simple behavioral rules that 
exploit only local information that the 
individuals exchange directly or via the 
environment;

• The overall behavior of the system results 
from the interactions of individuals with 
each other and with their environment, i.e. 
the group behavior self-organizes.

The characterizing property of a SI system is its 
ability to act in a coordinated way without the pres-
ence of a coordinator or of an external controller. 
Most often, the behavior of each individual of the 
swarm is described in probabilistic terms, as each 
individual has a stochastic behavior that depends 
on his local perception of the neighborhood.

The following Section explains Ant Colony 
Optimization (ACO), an SI technique that is 
widely used in job scheduling problems, and will 
be the basis for analyzing the state of the art of 
the subject in this work.

Ant Colony Optimization

Ant Colony Optimization algorithm (ACO), in-
troduced by Marco Dorigo in 1992 in his doctoral 
thesis (Dorigo, 1992), is a probabilistic technique 
for solving computational problems which can be 
reduced to finding shortest paths through graphs. 
ACO was inspired by the observation of real ant 
colonies. An interesting behavior is how ants can 
find the shortest paths between food sources and 
their nest.

In the real world, ants (initially) wander ran-
domly, and upon finding food return to their colony 
while laying down pheromone trails. If other ants 
find such a path, they are likely not to keep trav-
eling at random, but to instead follow the trail, 
returning and reinforcing it if they eventually find 
food. Thus, when one ant finds a good (i.e. short) 
path from the colony to a food source, other ants 
are more likely to follow that path, and positive 
feedback eventually leaves all the ants following 

a single path. The idea of ACO is to mimic this 
behavior with simulated ants walking around the 
graph representing the problem to solve.

Over time, however, pheromone trails start to 
evaporate, thus reducing their attractive strength. 
The more the time it takes for an ant to travel down 
the path and back again, the less the frequency 
with which pheromone trails are reinforced. A short 
path, by comparison, gets marched over faster, 
and thus the pheromone density remains high as 
it is laid on the path as fast as it can evaporate.

From the algorithmic point of view, the phero-
mone evaporation process has also the advantage 
of avoiding the convergence to a locally optimal 
solution. If there were no evaporation at all, the 
paths chosen by the first ants would tend to be 
excessively attractive to the following ones. In that 
case, the exploration of the solution space would 
be constrained. Thus, when one ant finds a good 
path from the colony to a food source, other ants 
are more likely to follow that path, and positive 
feedback eventually leaves all the ants following 
a single path.

Figure 3 shows two possible paths from the nest 
to the food source, but one of them is longer than 
the other one. Ants will start moving randomly to 
explore the ground and choose one of two ways 
as can be seen in (a). The ants taking the shorter 
path will reach the food source before the others 
and leave behind them a trail of pheromones. After 
reaching the food, the ants will turn back and try to 
find the nest. The ants that go and return faster will 
strengthen more quickly the pheromone amount 
in the shorter path, as shown in (b). The ants who 
took the long way will have more probability 
to come back using the shortest way, and after 
some time, they will converge toward using it. 
Consequently, the ants will find the shortest path 
by themselves, without having a global view of 
the ground. After a certain time, almost all ants 
will choose the left path as shown in (c).

Precisely, the above behavior of real ants has 
inspired ACO, which is a population-based ap-
proach that has been in turn successfully applied 
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to many NP-hard optimization problems (Dorigo 
and Caro, 1999). One of its main ideas is exploit-
ing the indirect communication among the indi-
viduals of an ant colony. Intuitively, this mecha-
nism is based on an analogy with the 
abovementioned trails of pheromone which real 
ants use for communication. ACO employs 
pheromone trails as a kind of distributed nu-
merical information which is modified by ants to 
reflect their accumulated experience while solv-
ing a particular problem.

When applied to optimization problems, ACO 
uses a colony of artificial ants that behave as coop-
erative agents in a solution space were they are al-
lowed to search and reinforce pathways (solutions) 
in order to find the optimal ones. A solution that 
satisfies the problem constraint is feasible. After 
initialization of pheromone trails, ants construct 
feasible solutions, starting from random nodes, 
and then pheromone trails are updated. A node 
is an abstraction for the location of an ant, i.e. a 
nest or a food source. At each execution step ants 
compute a set of feasible moves and select the 
best one (according to some probabilistic rules) 
to carry out the rest of the tour. The transition 
probability is based on the heuristic information 
and pheromone trail level of the move. The higher 
the value of the pheromone and the heuristic in-

formation, the more profitable it is to select this 
move and resume the search. In the beginning, the 
initial pheromone level is set to a small positive 
constant value 0 and then ants update this value 
after completing the construction stage. All ACO 
algorithms adapt a specific algorithm scheme as 
shown in Figure 4.

After initializing the pheromone trails and 
control parameters, a main loop is repeated until 
the stopping criterion is reached. The stopping 
criterion can be for example a certain number of 
iterations or a given time limit without improving 
the overall result. In the main loop the ants con-

Figure 3. Adaptive behavior of ants (adapted from Ciruela Martín, 2008)

Figure 4. Pseudo-code of a basic ACO algorithm
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struct feasible solutions and update the associ-
ated pheromone trails. More precisely, partial 
problem solutions are seen as nodes: each ant 
starts from a random node and moves from a node 
i to another node j of the partial solution. At each 
step, the ant k computes a set of feasible solutions 
to its current node and moves to one of these 
expansions, according to a probability distribution. 
For an ant k the probability pkij to move from a 
node i to a node j depends on the combination of 
two values:
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where:

• ηij is the attractiveness of the move as com-
puted by some heuristic information indi-
cating a prior desirability of that move;

• τij is the pheromone trail level of the move, 
indicating how profitable it has been in the 
past to make that particular move (it repre-
sents therefore a posterior indication of the 
desirability of that move);

• allowedk is the set of remaining feasible 
nodes.

Thus, the higher the pheromone value and 
the heuristic information, the more profitable it 
is to include state j in the partial solution. The 
initial pheromone level is set to τ0, which is a 
small positive constant. In nature there is not 
any pheromone on the ground at the beginning, 
or the initial pheromone is τ0 = 0. If in the ACO 
algorithm the initial pheromone is zero, then the 
probability to chose next state will be pkij = 0 and 
the search process will stop from the beginning. 
For this reason, the initial pheromone must be a 
positive numeric value.

Furthermore, the pheromone level of the ele-
ments of the solutions is changed by applying the 
following updating rule:

τij ← ρ.τij + Δτij

where the inequality 0 < ρ < 1 models evaporation 
and Δτij is an additional pheromone and it is differ-
ent for each implementation of ACO algorithms. 
Normally, the quantity of the added pheromone 
depends on the quality of the solution.

In practice, to optimize job scheduling prob-
lems, the ACO algorithm has the advantage that 
allows the use of graphical representations, where 
a graph design is used to identify the problem and 
connect the corresponding arcs of each job to each 
submitting physical machine. Here, each job can 
be represented by an ant, i.e. by an agent. Agents 
cooperatively search the less-loaded machines 
with sufficient available resources and transfer 
the jobs to these machines.

RELATED WORK OF JOB 
SCHEDULING BASED ON ACO

In the last ten years, Swarm Intelligence has 
received increasing attention in the research 
community. Due their fast convergence rate, 
global optimization ability and robustness, SI 
algorithms were applied to approximate classical 
NP-complete problems such as Traveling Sales-
man Problem (TSP) (Bianchi et al., 2002; Kuo 
et al., 2010), Job Shop Problem (JSP) (Heinonen 
and Pettersson, 2007; Huang and Liao, 2008) and 
other optimization problems (Yun-Chia and Smith, 
2004; Baterina and Oppus, 2010).

Within the realm of combinatorial optimiza-
tion, SI finds its niche in routing applications 
and in specialized job scheduling activities. Not 
surprisingly, these two applications correlate very 
well with two fundamental traits of SI, i.e. positive 
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feedback or reinforcing good solutions present in 
the system, and division of labor. Moreover, social 
insect colonies can solve complex problems col-
lectively by distributed and intelligent methods. 
These problems are beyond the capabilities of each 
individual insect, and the cooperation among them 
is largely self-organized. As a result, the collec-
tive behavior of insects has become a model for 
tackling job scheduling problems.

Particularly, in recent years, several research-
ers have proposed algorithms based on ACO for 
solving job scheduling problems in distributed 
environments, particularly Grids and Clouds. After 
analyzing the existing literature, we have classified 
the relevant works into four main groups accord-
ing to the objectives (or variables) the associated 
scheduling algorithms are designed to optimize:

• Approaches minimizing makespan
• Approaches maximizing load balancing
• Approaches minimizing makespan and 

maximizing load balancing
• Approaches minimizing makespan and 

minimizing monetary cost
• Approaches minimizing makespan, maxi-

mizing load balancing and minimizing 
monetary cost

In next subsections, the approaches for job 
scheduling based on ACO falling in these cat-
egories are discussed. Within each category, ap-
proaches are referenced by using authors’ names. 
Lastly, the fourth and fifth categories represent 
scheduling algorithms that assume distributed 
environments which charge users for the computa-
tional resources (typically CPU time and network 
usage) they spend when running their applications.

Approaches Minimizing Makespan

Lorpunmanee et al.

In (Lorpunmanee et al., 2007) the authors have 
proposed an ACO algorithm for dynamic job 

scheduling in Grid environments where the avail-
ability of resources is constantly changing and jobs 
arrive to be executed at different times. Generally, 
jobs are sent to a Grid at different time points, 
and each job has different lengths and consumes 
different resources. Therefore, job processing is 
performed at different execution times.

The proposed ACO algorithm takes into 
account the requirements of each job, which 
are independent of each other. Moreover, each 
processor execute only one job per unit time, is 
to say that once a processor finishes to execute 
a job can process a new job. The motivation of 
this paper was to develop an ACO algorithm that 
can produce an optimal selection of resources and 
minimize efficiently and effectively the total tardi-
ness time (makespan), i.e. to improve the overall 
performance of a set of jobs within a dynamic Grid.

In the algorithm, the authors have defined 
the completion time (CT) as the wall clock time 
time, which machine completes for each job. 
The completion time of job jth in a machine i is 
defined as Cij = aj + rj + ETCij, where aj is the 
arrival time of the job j, rj is the release time of 
the job j, and ETCij is defined as the amount of 
time that the job j is processed in the machine i, 
and the machine has no load to the assigned job. 
Moreover, the algorithm includes four steps, 
namely pheromone initialization, state transition 
rule, local update rule and global update rule.

Initially, a set of artificial ants are created. 
Each ant starts with one unscheduled job in one 
machine and then the ant builds a job tour in 
machines until a feasible solution is constructed. 
To do this, the ant makes the best possible move 
as marked by pheromone trails and the heuristic 
information. To do this ants use the state transi-
tion rule. The heuristic is used to determine the 
desirability of to move the job j from machine i 
to machine m. This is inversely proportional to 
the completion time of the job j that has been as-
signed on machine m, or ηj(i, m) = 1=(aj + rj + 
Pm,j), where P is the processing time of the job j 
on the machine m. The local update rule is used 
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by ants while building a solution. Ants visit paths 
and change their pheromone level which is used 
immediately to locally update the rule. The local 
rule reduces the convergence because ants choose 
a new machine based on high pheromone levels.

A machine becomes less desirable for the fol-
lowing ants, if the pheromone trail is reduced. The 
global update rule is performed after that each ant 
has completed its tour (a feasible solution) and 
only one ant that has the best solution found so 
far, is allowed to deposit pheromone to the path 
after each iteration. Therefore, job j is assigned 
from machine i to machine m in the global best 
solution.

The experiments performed to evaluate the al-
gorithm were simulated using the GridSim (Buyya 
and Murshed, 2002) toolkit. The results obtained 
by authors have shown that the Ant Colony Opti-
mization algorithm is the best average case of the 
tardiness time with respect to other algorithms as 
First Come First Served (FCFS), Minimum Time 
Earliest Due Date (MTEDD) and Minimum Time 
Earliest Release Date (MTERD). FCFS is a policy 
whereby the requests of service are attended to in 
the order that they arrived, without other biases or 
preferences. MTEDD orders the sequence of jobs 
to be serviced from the job with the earliest due 
date to the job with the latest due date. Finally, 
MTERD gives the highest priority to the job that 
has the earliest release date in the queue.

Mathiyalagan et al.

Another improved ACO algorithm was proposed 
in (Mathiyalagan et al., 2010b). Authors have 
developed a modified pheromone updating rule 
which solves the Grid scheduling problem more 
effectively than the traditional ACO algorithm 
(Dorigo and Caro, 1999) by modifying its basic 
pheromone updating rule. The basic pheromone 
updating rule τij(t)new= ρ..τij(t)old + Δτij(t) has 
been changed τij(t)new=(ρ.τij(t)old)+(ρ/(ρ+1). 
Δτij(t)), where τij is the trail intensity of the path 
(i, j) (j is a job and i is the machine assigned to 

the job j), ρ is an evaporation rate and Δτij is an 
additional pheromone added when a job is moved 
by the scheduler to a resource.

The experimental results carried out by the 
authors prove that the improved ACO algorithm 
has an effective role on Grid scheduling. The modi-
fied pheromone updating rule makes the improved 
ACO algorithm to work more efficiently than the 
original ACO algorithm. This approach was also 
simulated using GridSim (Buyya and Murshed, 
2002) toolkit. The authors have achieved a better 
optimization level because the improved ACO 
algorithm finds the best resources to assign each 
job at a faster rate, thus increasing efficiency.

Benerjee et al.

Another heuristic approach proposed by Benerjee 
et al. (Banerjee et al., 2009) based on ACO was 
adapted to address service allocation and sched-
uling within a Cloud Computing environment. 
The proposed optimization method is mainly 
aimed to maximize the scheduling throughput 
to handle all the diversified requests according 
to different resource allocator available under 
a Cloud Computing environment. Second, the 
pheromone update mechanism has been modi-
fied to minimize the makespan of services based 
on Cloud Computing. Steps of the classic ACO 
algorithm have been modified to manage a Cloud 
architecture. A Cloud is viewed as a collection of 
clustered services for executing jobs and storing 
data, hence a live service of a Cloud behaves like 
an ant. Each path between machines (r, s) has a 
distance or cost associate δ(r, s) and a pheromone 
concentration τ(r, s). The pheromone updating 
rule is applied as:

τ (r, s) = (1 – α) τ (r, s) + Σ Δτk (r, s)

where α is the pheromone evaporation factor 
between 0 and 1, and Δτk (r, s) is the cost done 
by ant k if (r, s) is its path and it is 0 if it is not 
in the path.
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Every time a request is processed on a Cloud 
machine, the pheromone concentration is updated 
for all the paths between machines modifying 
the above formula by associating a parameter •τ.

τ (r, s) = (1 – αtcs) τ(r, s) + ΣΔ τk+tcs(r, s)

where •τ represents the time for each cloud schedul-
ing service and αtcs accounts for the evaporation 
factor under time slot within cloud machines. 
The heuristic is divided into two categories for 
Cloud-based services: online mode service and 
batch mode service. In online mode, whenever 
a request arrives is immediately allocated to the 
first free resource allocator. The arrival order of 
the request in a Cloud is important in the proposed 
method. Each service request is considered only 
once for matching and scheduling. In batch mode, 
requests are collected and the scheduler considers 
the approximate execution time for each job. Then, 
the scheduler uses a heuristic to make a better 
decision. The authors have run examples in real 
Cloud environments by using Google App Engine 
and Microsoft Live Mesh in order to evaluate the 
proposed ACO algorithm, achieving performance 
improvements.

Ritchie and Levine

The work proposed in (Ritchie and Levine, 2004) 
describe an ACO algorithm that, when combined 
with Local Search (LS) (Alabas Uslu and Dengiz, 
2011) and Tabu Search (TS) (Liao and Huang, 
2011), can find shorter schedules on benchmark 
problems than other techniques described in 
(Braun et al., 2001). With LS technique, any 
solution s will have at least one processor with 
a schedule length equal to the makespan of the 
solution, which is called the “problem” processor. 
When more than one problem processor exists, one 
of them is picked arbitrarily. The neighborhood 
Ne of the solution s is defined as all solutions 
that differ by a single transfer of a job currently 
allocated from the problem processor to any other 

processor, or by a single swap of a job currently 
allocated to the problem processor with a job 
allocated to other processor. On the other hand, 
TS is a more sophisticated LS strategy that tries 
to avoid entrapment in local minimum by using a 
tabu list of previously visited regions of the search 
space and disallowing moves that would result in 
a solution that is contained in the list, i.e. one that 
has been seen before.

The goal of this work was to minimize the 
total execution time of a metatask (collection of 
independent jobs with no inter-job dependences, 
i.e. a PSE). Here, the authors assume that the 
expected running time of each individual job on 
each processor must be known. This informa-
tion is stored in an “Expected Time to Compute” 
(ETC) matrix where a row contains the ETC for 
a single job on each one of the available proces-
sors. Moreover, any ETC matrix will have n x m 
entries, where n is the number of jobs and m is 
the number of processors.

In order to simulate various possible hetero-
geneous scheduling problems as realistically as 
possible, the authors have defined different types 
of ETC matrices as proposed in (Braun et al., 2001) 
according to three metrics: job heterogeneity, 
machine heterogeneity and ETC consistency. Job 
heterogeneity is the amount of variance possible 
among the execution times of jobs and has two 
possible values: high and low. Machine heteroge-
neity represents a possible variation of the running 
time of a particular job across all processors, and 
again has two values: high and low. In order to 
try to capture some other possible features of 
real scheduling problems, three different ETC 
consistencies were used: consistent, inconsistent 
and semi-consistent. An ETC matrix is said to be 
consistent if whenever a processor pj executes a 
job ji faster than another processor pk, then pj will 
execute all other jobs faster than pk. This behavior 
can be seen as modeling an heterogeneous system 
such as Grid Computing in which the processors 
differ only in their processing speed. An ECT 
matrix is inconsistent when a processor pj can 
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execute some jobs faster than pk and some other 
slower. Such an inconsistent ETC matrix could 
therefore simulate a real network layer in which 
there are different types of available machines. 
Finally, a semi-consistent ETC matrix is an incon-
sistent matrix which has a consistent sub-matrix 
of a predefined size, and therefore simulates for 
example a Grid that incorporates a sub-network 
of similar machines (but with different processor 
speeds), but also includes an array of different 
computational devices.

In this work the authors have determined what 
information they must encode in the pheromone 
trail to allow ants to share useful information about 
good solutions. Due to the fact that jobs run at 
different speeds on different processors, this infor-
mation is useful to store information about good 
processors for each job. Therefore, the pheromone 
value (i, j) was selected to represent the favorability 
of scheduling a particular job j into a particular 
processor i. The ants build their own solution using 
both information encoded in the pheromone trail 
and also problem specific information in the form 
of an heuristic. Here, the heuristic used is Min-
min (Etminani and Naghibzadeh, 2007), which 
suggests that the heuristic value of particular job 
j should be proportional to the minimum comple-
tion time of j. The minimum completion time j can 
be expected to finish on its best processor pjbest. 
To leave a pheromone trail the authors have used 
the Max-min Ant System (MMAS) described 
in (Stützle and Hoos, 2000). Basically, only the 
best ant sbest is allowed to leave pheromone. As 
a consequence, after each iteration, the search is 
much more aggressive and significantly improves 
the performance of ACO algorithms.

Due to the fact that other researchers (Dorigo 
and Stützle, 2003; Levine and Ducatelle, 2003) 
have demonstrated that ACO algorithms can often 
effectively be improved by combining them with 
local search (LS) techniques, in this work the 
authors have applied an ad-hoc LS technique to 
the ACO algorithm proposed. The LS procedure 
exhaustively analyses this neighborhood and 
selects the swap or transfer which reduces the 
maximum schedule length of the two processors 

involved the most. The process must be repeated 
until no further improvement is possible. On the 
other hand, when TS is used in conjunction with 
the ACO algorithm it is simply used for n itera-
tions to try to improve the solution of the iteration 
best ant, which already have had LS applied to it.

Approaches Maximizing 
Load Balancing

Hui Yan et al.

The work in (Hui et al., 2005) focuses on an im-
proved ACO algorithm for job scheduling in Grid 
Computing. The aim of this approach is focused 
on maximizing load balancing on machines. When 
a resource j enrolls into a Grid system, it is asked 
to submit its performance parameters, such as 
number of processors, processing capability of 
each processor, communication ability, etc. In 
the Grid, a resource finder tests these parameters 
for validation and initializes the trail intensity, 
which represents pheromones of real ants, for 
the resource j in the ACO algorithm. Here, τi(0) 
is the trail intensity on path i from the scheduler 
to the corresponding resource i at time 0. In the 
classic ACO the pheromone trail is changed by 
applying the following updating rule: τi = ρτi + 
Δτi, where ρ models evaporation and Δτi is an 
additional pheromone.

This algorithm adds a load balancing factor. 
The load balancing factor λi, which is related to 
the job finishing rate in the resource i in order to 
change the pheromone trail. This makes the job 
finishing rate at different resource being similar 
and the ability of the systematic load balancing is 
improved. The trail intensity has been changed to 
τi = ρτi + Δτi + Cλi, where C > 0 is the coefficient 
of the load balancing factor. When more jobs are 
finished, the trail intensity increase, contrarily, 
when the jobs are not completed the trail intensity 
decreases. A simulation system was developed 
to test the ACO algorithm in a simulated Grid 
environment, which showed the feasibility of the 
approach.



425

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Fidanova and Durchova

The work proposed in (Fidanova and Durchova, 
2005) introduces a job scheduling algorithm for 
Grid Computing. The algorithm is focused on 
maximizing load balancing on machines. The aim 
of this approach was to develop a high throughput 
computing scheduling algorithm based on ACO, 
which means scheduling a set of independent jobs 
to increase the processing capacity of a system 
over a long period of time.

The proposed ACO algorithm incorporates the 
use of a function free(i) to report when a machine 
i is released. If a job tj is executed on a machine 
mi, then the beginning time of tj becomes bj = 
free(i) + 1 and the new value of the function free(i) 
becomes free(i) = bj + ETij = CTij after assigning 
the job tj, where ETij is the expected execution 
time of the job tj on the machine mi and CTij is the 
expected completion time. The heuristic informa-
tion used by the algorithm is ηij = 1/free(i). The 
heuristic decides that if a machine is freed earlier, 
the corresponding node –in SI terms– will be more 
desirable. At the end of each iteration the objective 
function is calculated as Fk = max(free(i)) over 
the solution constructed by ant k. The additional 
pheromone trail added by an ant is Δτij = (1 – ρ)/
Fk, where ρ models the evaporation factor. Hence, 
in the subsequent iterations the elements of the 
solution with less value of the objective function 
will be more desirable.

In the proposed algorithm two kinds of sets 
of job are needed: a set of scheduled jobs and a 
set of arrived and unscheduled jobs. When the set 
of scheduled jobs becomes empty the scheduled 
algorithm is started over the jobs from the set 
of unscheduled jobs. This guarantees that the 
machines will be fully loaded.

Zehua and Xuejie

In the work (Zehua and Xuejie, 2010) the authors 
have proposed a load balancing mechanism 
based on ACO and complex network theory in 

Open Cloud Computing Federation (OCCF), a 
federation that includes multiple Cloud provid-
ers devoted to create an uniform Cloud resource 
interface to users. Moreover, in the context of 
network theory, a complex network (Carpi et 
al., 2011) is a graph (network) with non-trivial 
topological features -features that do not occur 
in simple networks such as lattices or random 
graphs but often occur in real graphs. The study 
of complex networks is a young and active area of 
scientific research inspired largely by the empirical 
study of real-world networks such as computer 
networks and social networks. Some of recent 
studies were focused on the issue of whether the 
same principles could be applied to the develop-
ment of the computer-network communication 
(Strogatz, 2001).

Load balancing is a very important goal to 
achieve in Cloud Computing due two reasons. 
First, Cloud providers must use load balancing 
in its own Cloud platform to provide a solution 
with high efficiency for the user. Second, a load 
balancing mechanism is needed to achieve low 
monetary costs and “infinite” resource pool for 
users.

In nature and in technology many systems 
consist of a large number of highly interconnected 
dynamical units. Despite the inherent differences, 
most of the real networks are characterized by the 
same topological properties, such as relatively 
small characteristic path lengths, high clustering 
coefficients, and so on. All these features make real 
networks radically different from regular lattices 
and random graphs, i.e. the standard models stud-
ied in mathematical graph theory. For this reason, 
the authors only have considered small-world 
property and scale-free distribution. A network 
is called a small-world network by analogy with 
the small-world phenomenon, which is popularly 
known as six degrees of separation. The small 
world hypothesis is the idea that two arbitrary 
people are connected by only six degrees of separa-
tion, i.e. the diameter of the corresponding graph 
of social connections is not much larger than six.



426

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

The first small-world network model (Stro-
gatz, 2001), which through a single parameter 
smoothly interpolates between a random graph 
to a lattice. Their model demonstrated that with 
the addition of only a small number of long-range 
links, a regular graph, in which the diameter is 
proportional to the size of the network, can be 
transformed into a “small world” in which the 
average number of edges between any two vertices 
is very small (mathematically, it should grow as 
the logarithm of the size of the network), while 
the clustering coefficient stays large. It is known 
that a wide variety of abstract graphs exhibit the 
small-world property, e.g., random graphs and 
scale-free networks. Further, real world networks 
such as the World Wide Web and the metabolic 
network also exhibit this property.

On the other hand, a network is named scale-
free when the probability that a machine selected 
uniformly at random has a certain number of links 
(degree), follows a particular mathematical func-
tion called a power law. The power law implies 
that the degree distribution of these networks has 
no characteristic scale. In contrast, network with a 
single well-defined scale are somewhat similar to 
a lattice in that every machine has (roughly) the 
same degree. In a network with a scale-free degree 
distribution, some vertices have a degree that is 
orders of magnitude larger than the average these 
vertices are often called “hubs”, although this is 
a bit misleading as there is no inherent threshold 
above which a machine can be viewed as a hub. 
If there were such a threshold, the network would 
not be scale-free.

These two characteristics are considered by 
the authors to move ants, since the machine with 
a large degree may leads the ants (or the jobs) 
move more quickly towards the region where 
more resources may be found for the execution 
of the jobs.

In order to perform the load balancing, the 
four following steps are carried out:

1.  Underload load balancing step: Here an ant 
is periodically sent out by an underloaded 
machine to balance the workload on the 
whole OCCF and keep the complex net-
work’s vitality by updating the pheromone 
on each machine through the following steps: 
once the ant starts its trip from a machine 
and whenever the ant moves, during its trip, 
the ant remembers the machine which has 
maximum/minimum workload and the cor-
responding workload on them.

2.  Overload load balancing step: Once a 
machine find its workload has excess its 
own threshold W, an ant is sent out by the 
machine, then, the following processes are 
carry out as the underload load balancing 
method except that the source machine of 
ants is appointed as the Nmax, where Nmax 
is the machine with maximum workload.

3.  Pheromone update step: Once the load bal-
ancing is performed between the machines 
Nmax and Nmin, the ant backtracks the path 
that has traversed to update the pheromone 
values on the trail. To this end, each machine 
maintains a pheromone table of the trails 
which link to its neighbor machines and 
the values corresponding to the amount of 
pheromone on the path is stored in this table. 
The pheromone update process includes 
both increase and evaporation. Besides, the 
distribution of the pheromone changed on 
the whole path is assigned according to the 
strategies that more pheromone is assigned to 
the paths near to Nmax and less pheromone 
to the paths near to Nmin.

4.  Complex network evolution step: The 
structure of the complex network evolves 
to adapt to changes in workload distribu-
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tion, after updating the pheromone, adding 
a new path between machines Nmax and 
Nmin is considered only if there is not such 
a path and the cost effectiveness is greater 
than a threshold Fmax. On the contrary, the 
elimination of a path is considered if the 
path has been sleeping too long. Therefore, 
a complex network with the characteristic 
of small-world and scale-free is expected 
to be gained through the local behaviors of 
the colonies of the ants, theses two char-
acteristic is useful in the load balancing 
processes of the ant algorithm. This means 
that the machine with a large degree in such 
a complex network may leads the ants move 
more quickly towards the region where more 
resources may be found for the execution of 
jobs.

Due to the fact a OCCF is consist of many 
cloud computing service provider’s (CCSP) facili-
ties, there would be many management regions 
-partitioned by geographically or the manage-
ment strategies- that belong to an unique CCSP. 
A machine in each management region is chosen 
as the region load balancing node (RLBN), each 
RLBN connect with many of the other RLBNs 
of a CCSP according to the information get from 
the CCSP. After that, many RLBN of a CCSP are 
selected to connect with RLBNs in other CCSP, 
so the topology of the connected RLBNs makes 
an overlay network which can be regarded as a 
complex network. The structure of the OCCF is 
depicted in Figure 5. A RLBN can add to or re-
move from the management region. Also, another 
RLBN can be selected from the region machines 
once a RLBN is failed.

Figure 5. The structure of the OCCF and the formation of the complex network



428

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

Approaches Minimizing Makespan 
and Maximizing Load Balancing

Kousalya and Balasubramanie

In (Kousalya and Balasubramanie, 2009) the au-
thors have proposed a modified ACO algorithm 
for Grid scheduling. The main focus of this work 
was to develop a high throughput scheduling 
algorithm based on ACO to minimize the makes-
pan and maximize the resource utilization. The 
modified ACO is combined with Local Search 
(LS) and takes into consideration the available 
time of resources and the execution time of jobs 
to achieve a better resource utilization and a bet-
ter scheduling. The LS (Alabas Uslu and Dengiz, 
2011) technique is to define the neighborhood of 
a solution. In general a solution will have one or 
more resources, i.e. those with schedule lengths 
equal to the makespan of the whole solution.

In this work, before starting the grid schedul-
ing, an expected execution time for each job on 
each machine must be estimated by an user and 
represented by an ET matrix. The ET matrix has 
NxM entries, where N is the number of indepen-
dent jobs to be scheduled and M is the number of 
resources that are available. Each row of the ET 
matrix represents an estimated execution time for 
a job on each resource. Then, every column repre-
sents an estimated execution time for a particular 
resource. ETij is thus the expected execution time 
of the job j in the machine i.

The Ready time (Readym) indicates the time 
resource m would have finished the previously 
assigned jobs. The completion time (CT) of jth job 
on the ith machine is CTij = Readyi + ETij. The 
proposed heuristic has two operating modes, an 
online mode where the scheduler is always ready, 
and other in batch mode, where the jobs and re-
sources are collected and mapped at preschedul-
ing time. In this sense, the bach mode scheduler 
takes better decisions because it knows details of 
available jobs and resources statically.

The number of jobs available for scheduling 
is always greater than the available number of 
machines in the grid. The free time of the ma-
chine mi is calculated using the function free(i). 
The starting time of job tj on resource mi is Bi = 
free(i) + 1 and then the new value of free(i) is the 
starting time plus ETij. A minimization function F 
= max(free(i)) and the heuristic information ηi = 
1/free(i) are used to find out the best resource. The 
pheromone level is updates adding an evaporation 
factor value between 0 and 1, and an additional 
pheromone value.

The probability to move a job from a machine 
i to a machine j is computed by Pij = (τij . ηij . (1/
CTij)) / (Στij . ηij . (1/ CTij)). Here, the authors 
have included to the classic approach (Dorigo 
and Caro, 1999) CTij value, which represents the 
execution time of the jth job in the ith machine 
in the calculation of probability and has shown 
a positive result in performance improvement. 
This improvement is in terms of to decrease the 
makespan. The result produced by this algorithm 
is a little better than others algorithms proposed 
by the authors in (Kousalya and Balasubramanie, 
2007; Kousalya and Balasubramanie, 2008) where 
ETij instead of CTij has been used.

The scheduling algorithm is executed periodi-
cally. Upon activation, the algorithm finds out the 
list of available resources (processors) in the Grid, 
forms the ET matrix and starts the scheduling. 
When all the scheduled jobs are dispatched to 
the corresponding resources, the scheduler starts 
to schedule over the unscheduled job matrix ET. 
This is to guarantee that the machines will be as 
loaded as possible.

An individual scheduling result in the modified 
ACO algorithm has four values (job, machine, 
starting time, completion time). These values 
are added to an output list. The starting time of 
the job j on the machine i is acquired through the 
function free(i), and the completion time is the 
starting time plus ETij. Finally, the output list is 
passed to an algorithm that uses the LS technique 
to reduce the overall makespan further. Try to 



429

Schedulers Based on Ant Colony Optimization for Parameter Sweep Experiments

reduce the resource makespan will immediately 
reduce the overall makespan of the solution. The 
neighborhood is a solution of single transfer of a 
job from a resource to any other resources.

The experiments performed by the authors have 
shown that the proposed modified ACO algorithm 
is capable of producing high quality scheduling of 
jobs to Grid resources. Particularly, the algorithm 
can be used to design efficient dynamic schedul-
ers for real time Grid environments. Additionally, 
by using ACO with their LS algorithm good load 
balancing results can be obtained.

Ruay-Shiung et al.

In (Ruay-Shiung et al., 2009) the authors propose 
the Balanced Ant Colony Optimization (BACO) 
algorithm for job scheduling in a Grid environ-
ment. The pheromone value on a path in the ant 
system is a weight for a resource in a Grid. More-
over, a resource with a larger weight value means 
that the resource has better computing power. For 
materializing the BACO algorithm the authors 
assume that each job is an ant and the algorithm 
sends the ants to search for resources.

BACO inherits the basic characteristics from 
ACO algorithm to decrease the computation 
time of executing jobs and considers the load 
of each resource. The BACO algorithm changes 
the pheromone density according to the status of 
resources by applying both a local pheromone 
update and a global pheromone update function. 
The pheromone value of each resource is stored 
in the scheduler. The pheromone indicator is 
calculated in each resource and for each job by 
adding an estimated transmission time and the 
execution time of a given job when it is assigned 
to a resource. The larger the value of pheromone 
Pij is, the more the efficiency of resource i when 
executing job j. The local and global pheromone 
update functions balance the system load. The lo-
cal pheromone update function updates the status 
of the selected resource after a job assignment 
round. The global pheromone update function, on 
the other hand, updates the status of each resource 
for all jobs after the completion of each job.

Xu et al.

In the work proposed in (Xu et al., 2003), the au-
thors validate the scalability of the ACO algorithm 
using a simple Grid simulation architecture for 
resource management and job scheduling. Once 
the authors have got the results of an n machines 
ACO problem, they can get the results of n + 
m or n – m machines of the same problem very 
quickly based on former results. The basic ACO 
algorithm has been improved by making it more 
suitable for Grid job scheduling. The extended 
algorithm works as follows:

1.  When a resource i joins a Grid, the resource 
is asked to submit its performance parameters 
(number of Processing Elements, MIPS of 
every Processing Element, where MIPS 
(Zhang and Theodoropoulos, 2003) is a 
measure of a computer’s central processing 
unit performance in Million Instructions Per 
Seconds, and so on). A resource monitor 
tests these parameters for validation and 
initializes links of pheromone taking into 
account these performance parameters.

2.  Every time a new resource joins the Grid or 
a resource fails or a job is assigned or there 
is some job results available/returned, the 
pheromone value in the path to the corre-
sponding resource will be changed. When 
a job is assigned to a resource, the transfer 
time of the job is subtracted to the pheromone 
value. When a job is returned successfully 
from a resource, an encourage factor is 
added to the pheromone value. When a job 
is returned as failed from a resource, a punish 
factor is applied.

3.  The probability of assignment a job to a 
resource i is calculated taking into account 
the pheromone intensity on the path to the 
resource i, the innate performance of the 
resource (initial pheromone value), and 
two parameter values that correspond to 
the importance of the pheromone and the 
importance of the resource innate attributes.
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In this work the authors have validated the 
scalability of the proposed algorithm by a simple 
Grid simulation architecture for resource manage-
ment and job scheduling. To do several routing 
experiments, the authors have added new machines 
and providing or not providing to the algorithm 
previous information. When the extended algo-
rithm uses previous information took less time to 
find the optimal or sub-optimal solutions. Using 
tens of machines or more than one hundred ma-
chine network, or cut off some machines of the 
network, the results shown similar findings. This 
characteristic is very helpful to Grid computing 
for its scalable and fault tolerance needs. The 
overall results have shown good response time 
and resource average utilization.

Ludwig and Moallem

In the work proposed in (Ludwig and Moallem, 
2011) a distributed algorithm based on ACO 
(AntZ) is presented. Authors claim that to achieve 
a good load balancer the following characteristics 
should be addressed:

• Optimum Resource Utilization: The uti-
lization of resources should be optimized 
by a load balancing algorithm to minimize 
time or cost related to these resources.

• Fairness: A load balancing algorithm 
should to be fair. This means that the dif-
ference between the heaviest loaded ma-
chine and lightest loaded machine in the 
network is minimized, keeping in mind 
that the search space is dynamic. The load 
is the number of jobs assigned to each re-
source relative to its computational power.

• Flexibility: When the topology of the net-
work or the Grid changes, the algorithm 
should be flexible enough to adhere to 
these changes.

• Robustness: When failures in the system 
occur an algorithm should have a way to 
deal with the failure and be able to cope 
with the situation.

In other classical ACO-based approaches to 
job scheduling, ants act independently from jobs 
being submitted while in this approach there is 
a close binding between jobs and load balancing 
ants. In the AntZ algorithm, each job submitted 
to a Grid invokes an ant, which searches through 
the network to find the best machine to deliver 
the job. Ants leave information related to the 
machines that have visited as a pheromone trail. 
The pheromone trail in each machine helps other 
ants to find lighter resources more easily.

The AntZ algorithm adds a decay rate and a 
mutation rate to deal with the problem of load 
balancing.

When a job is submitted to a local machine 
in the Grid an ant is initialized and starts work-
ing. In each iteration, the ant collects the load 
information of the visited machine and save this 
information in its private history table. The ant 
also updates the load information table of the 
visited machines. The load information table of a 
machine contains information of its own load and 
load information of other machines, which were 
added to the table when ants visited the machine. 
The load information table acts as a pheromone 
trail an ant leaves while it is moving, in order to 
guide other ants to choose better paths rather than 
wandering randomly in the network. Entries of 
each local table are the machines that ants have 
visited on their way to deliver their jobs together 
with their load information.

When an ant moves to the next machine has 
two choices. One choice is to move to a random 
machine with a probability given by the mutation 
rate. Another choice, on the other hand, is to use 
the load table information in the machine to choose 
where to go. The mutation rate decreases with a 
decay rate factor as time passes, thus the ant will 
be more dependent to load information than to 
random choice. This iterative process is repeated 
until the finishing criteria –i.e. a predefined number 
of steps– is met. Finally, the ant delivers its job 
to the machine and dies.

The performance of the AntZ algorithm is 
evaluated using performance criteria such as 
makespan and load balancing level. In this re-
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search authors have compared the performance 
of the AntZ algorithm with another SI algorithm 
based on Particle Swarm Optimization (Parti-
cleZ) described later in this survey. The authors 
performed measurements to compare the two 
algorithms in order to identify which are more 
effective and under which conditions. The authors 
also compared the performance of the algorithms 
with other classical techniques. To carry out the 
experiments the GridSim [52] simulation toolkit 
was used.

The advantages of the proposed algorithms 
are threefold. First, the algorithms show good 
performance results and optimized resource 
utilization. Second, the algorithms have proved 
to be “fair” compared to a Random and State 
Broadcast Algorithm (SBA) approach. The Ran-
dom approach is a simple scheduling algorithm in 
which the jobs being sent to the Grid are assigned 
randomly to different resources. On the other 
hand, SBA is based on broadcast messages which 
are exchanged between resources. Whenever the 
state of a machine changes, due to the arrival or 
departure of a job, the machine broadcasts a status 
message that describes its new state. This informa-
tion policy enables each machine to hold its own 
updated copy of the system state Third, AntZ is 
very simple to implement which is a benefit for 
a distributed system. Finally, looking at the scal-
ability of the algorithms they show linear growth 
in response to both an increase in the number of 
jobs and an increase in the length of jobs, which 
ensures scalability.

Palmieri and Castagna

The work presented by Palmieri and Castagna 
(Palmieri and Castagna, 2007) is focused on the 
ACO algorithm to achieve a good load balanc-
ing. In this work a Grid resource management 
framework was implemented as an ant-like self-
organizing mechanism used to perform efficient 
resource management on Grid machines through a 
collection of very simple local interactions. These 
interactions are achieved by heuristically deter-

mining a scheduling solution that distributes the 
jobs on the Grid resources minimizing the overall 
Grid makespan, and the flowtime, i.e. sum of the 
completion times of all jobs. In this algorithm 
each job is carried by an ant. Ants cooperatively 
search for the less-loaded machines with sufficient 
available resources, and transfer the jobs to be 
executed to these machines. When an ant founds 
a machine to assign the job, it deposits pheromone 
to mark the detected solution.

A pheromone matrix will have a single entry 
for each job-machine pair in the problem and 
use a parameter which defines the pheromone 
evaporation rate. To build a solution the ants use 
heuristic information to guide their search with 
specific information of the problem. The heuristic 
value used by the ants for each job is inversely 
proportional to the minimum completion time for 
the job j on all the available machines, or better 
stated its completion time on the best available 
machine on the Grid.

Essentially, in this paper the authors want to 
maximize the productivity (throughput) of a Grid 
through an intelligent load balancing and at the 
same time, the authors want to obtain planning 
that offer a quality of service acceptable to the 
users. Consequently the fitness function for the 
assignment and balancing problem is simply be 
the inverse of the sum of makespan ms and mean 
flowtime fs of the solution s, weighted by a prop-
erly crafted parameter λ to give more priority to 
makespan, as it is the most important parameter. 
The fitness function equation is fs = 1/(λ.ms + 
(1 – λ).fs).

Simulation results performed by authors upon 
different experimental Grid topologies have indi-
cated that this proposed approach is highly adap-
tive, robust and effective in handling the above 
scheduling/load balancing problem. Moreover, 
the approach performs slightly better than the 
Tabu Search heuristic, especially in the presence 
of larger problems, i.e. with more Grid machines 
and jobs, since in these cases the number of ants 
associated to jobs and machines greatly increases.
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Approaches Minimizing Makespan 
and Minimizing Monetary Cost

Srinivasan et al.

In (Srinivasan et al., 2005) the authors have pro-
posed the Swarm Intelligence based approach 
for Task Allocation (SITA) algorithm. Here, the 
authors employed an ACO algorithm which aims 
is to optimize the often conflicting parameters of 
cost measured in Grid$ and execution time, both 
within a similar threshold. By programming a 
mathematical model of the behavior of the ACO 
into mobile agents (Garrigues et al., 2010), the 
authors proposed an heuristic for the Grid job 
allocation problem.

In the algorithm, a Global Resource Manager 
(GRM) accepts jobs from users. GRM maintains 
two queues. The first one is used for jobs with 
specification of time optimization, and the second 
one is devoted to jobs that require cost optimiza-
tion. When a job is received by the GRM, it is 
queued into the appropriate queue depending on 
the scheduling policy specified by the user. In the 
Grid architecture implemented and used for give 
support this algorithm there is a layer below the 
GRM called Local Resource Managers (LRMs), 
which hold administrative authority over a subset 
of Grid resources that registered with it. Ants are 
deployed from a LRM to its corresponding β Grid, 
or a sub-grid under the administrative influence of 
the LRM. Each ant carries the job characteristics, 
the machines visited so far, the route cost so far 
and the Grid$ spent so far. An ant also maintains a 
tabu list which contains a list of visited paths. This 
list is maintained so that ants can avoid traveled 
links and thus avoid cycles. The characteristics 
include, trail intensity of both cost pheromone and 
time pheromone and the communication cost as 
obtained by using a modified link state flooding 
approach.

The next hop is selected probabilistically based 
on the pheromone intensity and the cost of that 
link. The pheromone evaporation rate makes the 

system responsive to dynamic network conditions, 
i.e. available network bandwidth, number of avail-
able machines, traffic network, etc. The job that 
was removed from the queue is handed over to all 
the LRMs which then individually compute the 
best allocation for this job making use of SITA. 
Based on an optimality index for the goodness of 
the fit, the best allocation is chosen for the job.

From the LRM and for each job, a swarm of 
explorer ants is deployed. The swarm crawls to-
wards the best possible Grid resource to allocate 
the job to. Each ant chooses its next hop on the 
basis of a stochastic function that depends on 
two parameters, namely the proximity of a Grid 
Resource (to keep communication cost and trans-
mission time low), and the trail intensity, which 
is a function of the number of ants that have gone 
through that link. In the LRM, after a specified 
percentage of ants report back the same path, the 
allocator ant is sent to the chosen Grid resource to 
allocate memory and resources. As the allocator 
ant traces the path, it proportionately lowers the 
pheromone levels.

Approaches Minimizing Makespan, 
Maximizing Load Balancing, and 
Minimizing Monetary Cost

Sathish and Reddy

In (Sathish and Reddy, 2008) the authors have 
presented and evaluated a dynamic scheduling 
strategy that maximizes the utilization of a Grid 
resource processing capabilities (load balancing), 
and reduces the processing cost and processing 
time taken to execute jobs on the Grid. This job 
scheduling strategy enhances (Xu et al., 2003) 
by taking into account the processing require-
ments for each job, the current state of the avail-
able resources, the current load and capacity of 
those resources, and the processing cost of those 
resources. The scheduler schedules a job based 
on the execution possibilities of the resources.
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The possibility of assignment of a job to a 
resource i is calculated taken into account the 
pheromone intensity on the path to resource i, and 
two factors that represent the importance of the 
pheromone and the importance of the resource, 
respectively. The problem with the proposed algo-
rithm in (Xu et al., 2003) is that it may schedule 
a job to a resource with low possibility even if 
the resources with high possibility are free, where 
“possibility” refers to a numeric value that tells 
how good a resource is for a given job. If the 
jobs are always scheduled to a resource with high 
possibility, then the load on the resource may be 
increased and the jobs may be kept waiting in the 
queue waiting for the resource to be free even 
though the other resources are free. To avoid this 
problem, Sathish and Reddy have proposed the 
following: if the difference between the possibility 
of the resource selected for executing a job using 
ant-algorithm proposed in (Xu et al., 2003) and 
the possibility of the resource with the highest 
possibility is less than a certain threshold, then the 
job will be scheduled to the resource selected by 
the ant-algorithm (Xu et al., 2003). Otherwise, the 
scheduler selects another resource and the above 
procedure will be repeated. The selection of the 
threshold plays an important role.

Since this modified algorithm takes the re-
sources with highest possibility into consideration, 
although the processing time is reduced, the 
processing cost of the jobs may increase when 
is compared to ant-algorithm (Xu et al., 2003). 
The inclusion of price factor into this modified 
algorithm minimizes the total execution time as 
well as the processing cost of the jobs. The price 
factor is selected by the Grid user who submits the 
jobs. For the experiments, the authors have been 
selected 1/number_of_resources as the thresh-
old value. In order to evaluate the proposed job 
scheduler GridSim toolkit (Buyya and Murshed, 
2002) have been used.

ANALYSIS OF ACO-BASED 
SCHEDULING APPROACHES

This section presents a summary of the schedulers 
based on Ant Colony Optimization described in 
the previous section. Table 1 summarizes each 
one of the objectives –among other aspects– for 
which these algorithms have been applied. Spe-
cifically, each one of the columns in the Table 1 
is described below:

• Paper: Contains a reference to the paper in 
which the authors describe the proposed 
work.

• Distributed Paradigm: Is the kind of dis-
tributed environment in which the different 
authors have applied their scheduling tech-
niques. “Grid” is an abbreviation for “Grid 
Computing” and “Cloud” refers to “Cloud 
Computing”.

• Additional Technique: Indicates wheth-
er the authors have combined the ACO 
technique with another metaheuristic 
technique.

• Objectives: List the objectives to be mini-
mized or maximized by the proposed ACO 
algorithm.

• Algorithm Evaluation: Refers to the 
type of environment in which the experi-
ments were performed by the authors. The 
environment may be for example a real 
platform, a simulated environment (when 
details about the simulation tools are not 
given in the articles), or a specific simula-
tion toolkit.

• Values of Input Variables: Here are the 
values of the ACO-specific variables that 
were used in the algorithms. Possible vari-
ables are:
 ◦ α, importance of trail intensity.
 ◦ β, importance of resource.
 ◦ ρ, permanence of pheromone trail.
 ◦ (1-ρ), evaporation of pheromone trail.
 ◦ P, overhead incurred in resource.
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 ◦ τ0, initial pheromone.
 ◦ ce, encouragement coefficient.
 ◦ cp, punishment coefficient.
 ◦ c, coefficient of load balancing factor.
 ◦ ants, the number of ants in the colony, 

i.e. the number of ants created by the 
ACO algorithm and sent to find the 
most suitable machines.

 ◦ Cost per sec, the processing cost per 
second of machines.

 ◦ Mutation rate, a probability used to 
decide if an ant moves to a random 
machine.

 ◦ Decay rate, a factor that causes the 
mutation rate decreases as time 
passes.

 ◦ --- means that it does not apply to the 
category or the authors did not pro-
vide information.

• Experiment Size: Describes the number 
of jobs and the number of machines used 
in the performed experiments.

• Extra Output: Tells whether the authors 
have measured other metrics in the experi-
ments in addition to the ones strictly asso-
ciated to the objectives.

• Resource Allocation: Refers to the time 
in which the allocation of jobs to resources 
is scheduled. Static resource allocation 
means that when the allocation of jobs to 
resources takes place, the scheduler has 
complete information in advance, i.e. the 
scheduler knows the details of both the 
jobs to allocate and the available resources. 
On the other hand, dynamic resource allo-
cation means that the jobs to be scheduled 
arrive at different times, and moreover that 
resource availability changes over time. A 
hybrid resource allocation is when some of 
the jobs are known in advance, and other 
jobs arrive at different times to be sched-
uled for execution and details of them are 
not available until they are received.

As can be seen in algorithms included in Table 
1, pheromone trail modeling has been subject of 
great attention in order to improve the schedul-
ers and to achieve the proposed objectives. A 
modification of this type is for example proposed 
in (Hui et al., 2005; Ruay-Shiung et al., 2009). 
Here, the authors add a load balancing factor to 
the pheromone trail. With this factor resources 
have similar completion rates, and thus the abil-
ity of load balancing across the overall system 
is improved. Many authors (Lorpunmanee et 
al., 2007; Mathiyalagan et al., 2010; Banerjee et 
al., 2009; Srinivasan et al., 2005; Palmieri and 
Castagna, 2007) have taken into account in the 
pheromone update rules the use of a pheromone 
evaporation rate and pheromone permanence 
rate. The pheromone evaporation rate is used to 
indicate that some of the paths traveled by ants 
are not very interesting, and to prevent that other 
ants choose those paths. On the other hand, the 
pheromone permanence rate is used to strengthen 
the most interesting paths, i.e. the paths chosen 
by the largest number of ants.

Specifically, the BACO algorithm proposed in 
(Ruay-Shiung et al., 2009) changes the pheromone 
update rules (local and global) to achieve better 
load balancing in the system. The local update rule 
refreshes the status of a selected resource after job 
allocation. On the other hand, the global update 
rule updates the status of each resource for all jobs 
after completion of each job. Thus, the scheduler 
keeps updated information of all resources for the 
next resource allocation round.

Moreover, in (Zehua and Xuejie, 2010; 
Kousalya and Balasubramanie, 2009; Ritchie 
and Levine, 2004) the authors have combined the 
classical ACO algorithm with other techniques or 
algorithms, such as Local Search or Tabu search. 
These algorithms have been helpful for research-
ers to obtain better results than classical (raw) 
SI approaches. However, just by looking at the 
Table 1, it clearly seems that the community is 
still influenced by the idea of developing “pure” 
ACO-based approaches rather than using comple-
mentary metaheuristics.
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Table 1. Summary of swarm intelligence approaches 

Paper Distributed 
paradigm

Additional 
technique

Objectives Algorithm 
evaluation

Values of 
input variables

Experiment 
size

Extra 
outputs

Resource 
allocation

Lorpun-
manee et 
al., 2007

Grid --- Minimize 
makespan

GridSim 
toolkit

ants=30, β=0.5, 
ρ=0.9,

3000 jobs 
10-20 ma-
chines

Total 
schedul-
ing time

Dynamic

Hui et al., 
2005

Grid --- Maximize load 
balancing

Simulated Grid α=0.5, β=0.5, 
P=0.99, 
ce=0.0003, 
cp=0.002, c=4

1000 jobs 
10 machines

Simulat-
ing time

Dynamic

Mathi-
yalagan et 
al., 2010

Grid --- Minimize 
makespan

GridSim toolkit --- 10-20 jobs 
5 machines

--- Static

Fidanova 
and 
Durchova, 
2005

Grid --- Maximize load 
balancing

Simulated Grid τ0=0.01, ρ=0.5, 
ants=1

20 jobs 
5 machines

--- Hybrid

Ruay-
Shiung et 
al., 2009

Grid --- Minimize 
makespan. 
Maximize load 
balancing

Real Grid (Tai-
wan UniGrid 
platform + GT4 
Globus toolkit)

α=0.5, β=0.5, 
P=0.99, 
ce=0.0003, 
cp=0.002, c=0.4

1000 jobs 
25 machines

Average 
execu-
tion time 
per job 
and 
standard 
deviation 
of load

Dynamic

Zehua and 
Xuejie, 
2010

Cloud Complex 
network

Maximize load 
balancing

Ad-hoc complex 
network with 
Java algorithm 
simulation 
software

--- 1000 jobs 
100 ma-
chines

Standard 
deviation 
of load

Dynamic

Banerjee 
et al., 
2009

Cloud --- Minimize 
makespan

Real Cloud 
(Google App 
Engine + Micro-
soft Live Mesh)

τ0=0.01, ρ=0.5, 
one ant per 
service

25 services 
request 
5 machines

--- Dynamic

Xu et al., 
2003

Grid --- Minimize 
makespan. 
Maximize load 
balancing

Simulated Grid α=0.5, β=0.5, 
ρ=0.8, ce=1.1, 
cp=0.8

20 jobs 
10 machines

Resource 
average 
usage 
ratio

Dynamic

Srinivasan 
et al., 
2005

Grid --- Minimize 
makespan. 
Minimize mon-
etary cost

Simulated Grid ants=1-4 --- Alloca-
tion cost

Dynamic

Kousalya 
and 
Balasub-
ramanie, 
2009

Grid Local 
search

Minimize 
makespan. 
Maximize load 
balancing

Simulated Grid --- 512 jobs 
16 machines

--- Dynamic

Ritchie 
and 
Levine, 
2004

Grid Local and 
tabu search

Minimize 
makespan

Simulated Grid α=1-50, β=1-
50, τ0=0.01, 
ρ=0.75, ants=10

512 jobs 
16 machines

--- Static

continued on following page
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Another fact that can be observed is that 
most works have been validated in simulated 
environments, with a number of used jobs that 
do not exceed 1000 jobs. Within the Distributed 
Computing community, it is broadly accepted to 
establish simulated experimental scenarios due 
to the inherent difficulty of performing tests in 
real environments. Nevertheless, in real scien-
tific experiments, such as those described at the 
beginning of this work, the number of jobs to be 
performed can far exceed that amount. It is then 
necessary to consider how these algorithms based 
on ACO respond to situations of greater stress 
on the machines, at least in simulated scenarios.

A fundamental issue to achieve High Perfor-
mance in Distributed Computing systems is re-
source allocation. As the reader can see from Table 
1, the authors have proposed different resource 
allocations techniques. Resource allocation is used 
to assign the available resources in an efficient 
way. This means to schedule jobs on the resources 
required by those jobs while taking into consider-
ation both the resource availability and the size of 
jobs to run. Distributed job scheduling is broadly 
classified according to resource allocation as static 
and dynamic. On one hand, static schemes use a 
priori knowledge about jobs behavior and do not 
obtain information about dynamically changes 

of the environment, i.e. available resources. On 
the other hand, dynamic schemes make few as-
sumptions about jobs characteristics and obtain 
information about the jobs and available resources 
before making a job scheduling decision.

As shown in the Table 1, some researchers 
(Mathiyalagan et al., 2010; Ritchie and Levine, 
2004) have proposed job scheduling algorithms 
that use static resource allocation. Due to the fact 
that both Grid Computing and Cloud Comput-
ing are environments where the availability of 
resources is highly dynamic by nature and the 
jobs arrive over time, applying static resource 
allocation is unrealistic in practice. On the other 
hand, in real systems available today there is great 
difficulty of obtaining complete information about 
the jobs and resources in advance. In this sense, 
hybrid resource allocation schemes have been 
also proposed in an attempt to provide a balance 
to this trade-off.

On the upside, each one of the changes intro-
duced by the authors to the original ACO algorithm 
has made the resulting algorithms more efficient 
according to their objectives. All modifications 
have achieved better schedulers to complete the 
execution of jobs within a minimum time and 
use the resources more efficiently. The Table 1 
evidences, however, that most of these algorithms 

Paper Distributed 
paradigm

Additional 
technique

Objectives Algorithm 
evaluation

Values of 
input variables

Experiment 
size

Extra 
outputs

Resource 
allocation

Sath-
ish and 
Reddy, 
2008

Grid --- Minimize 
makespan. 
Maximize load 
balancing

GridSim toolkit Cost per 
sec=1-7 
Thesh-
old=0.1-0.5

40 jobs 
20 machines

--- Dynamic

Palm-
ieri and 
Castagna, 
2007

Grid --- Minimize 
makespan. 
Maximize load 
balancing

Simulated Grid α=15, β=10, 
ρ=0.8

512-4096 
jobs 
32-256 
machines

Simula-
tion time

Dynamic

Ludwig 
and Moal-
lem, 2011

Grid --- Minimize 
makespan. 
Minimize mon-
etary cost. 
Maximize load 
balancing

GridSim toolkit Mutation 
rate=0.5 
Decay rate=0.2

1000 jobs 
100 ma-
chines

Simula-
tion time

Dynamic

Table 1. Continued
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are focused on minimizing makespan and achieve 
a proper load balancing, but they do not deal with 
other interesting and important metrics such as 
energy use.

Precisely, the development of computing 
systems has been traditionally focused on perfor-
mance improvements, for example minimizing 
execution times of the applications. Due to the 
large growth of scientific applications, more and 
more resources are necessary for processing. As 
a consequence, energy consumption has become 
a crucial problem (Liu and Zhu, 2010; Baliga et 
al., 2011; Beloglazov et al., 2011), on one hand 
because it has started to limit further performance 
growth due to expensive electricity bills, and on 
the other hand, by the environmental impact in 
terms of carbon dioxide (CO2) emissions caused 
by high energy consumption. This problem arises 
due to the processing of large amounts of data, 
management and switching of communications, 
and so on, and in fact has gave birth to a new field 
called Green Computing (Li and Zhou, 2011).

In distributed environments such as Cloud 
Computing it is important minimize energy con-
sumption within data centers. It is also important 
to consider the energy required to transport data to 
and from the end-user and the energy consumed 
in the process of doing so. We believe that since 
job scheduling techniques based on ACO have 
proven to be highly efficient in optimization prob-
lems can also be good candidates to address the 
problem mentioned above. Energy consumption 
could be then a variable within the objectives of 
a new algorithm. Indeed, an exhaustive search for 
journal papers regarding SI-based job schedulers 
for Cloud Computing that do consider energy 
consumption –which was performed at the time 
of writing this paper– yielded as a result only 
one paper (Jeyarani et al., 2011). This shows the 
undeveloped nature of the topic and therefore the 
research opportunities therein.

Finally, a distinctive feature of the surveyed 
works not shown in the Table 1 is that they do 
not consider job priority. Particularly, for running 

PSEs, this is a very important aspect. For example, 
when designing a PSE as N sets of jobs, where 
every job in a set p is associated a particular value 
for the ith variable of the model being simulated 
by the PSE, job running times between sets can 
be very different. This is due to the fact that run-
ning the same PSE code or solver (i.e. job) varies 
according to the variable being tested. Sometimes 
important variations may occur between jobs in 
the same set as well. These situations are very 
undesirable since the user can not process/visualize 
the outputs until all jobs finish. Therefore, giving 
higher priority to jobs that are supposed to take 
longer to finish may help in reducing makespan 
and hence improve output processing.

CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS

Parameter Sweep Experiments (PSE) is a type 
of numerical simulations that involves a large 
number of independent jobs and requires a lot of 
computing power. These jobs must be efficiently 
processed in the different computing resources of 
a distributed environment such as Grid Comput-
ing or Cloud Computing. Here, job scheduling 
becomes crucial.

To solve this problem, many researchers have 
proposed a large number of schedulers based on 
Ant Colony Optimization. In this work we have 
summarized different approaches in Table 1. As 
the reader can see, we have described problems of 
job scheduling where different authors have made 
several changes to the metaheuristics to achieve 
different goals, i.e. minimize the total execution 
time of jobs, minimize cost, and maximize load 
balancing or some combination thereof. In addi-
tion, the surveyed algorithms have been run or 
simulated on two types of distributed environ-
ments, i.e. Grid Computing and Cloud Computing. 
The simulation environments have been used to 
assess the algorithms performance and effective-
ness for job scheduling.
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An important issue to note is that most of the 
papers are aimed at Grid Computing environments, 
while very few are designed for Cloud Computing, 
which is due to the fact that Cloud Computing is 
a paradigm more recent than Grid Computing and 
much less popular among scientists and engineers. 
Cloud Computing, interestingly, is a paradigm that 
offers the means for building the next generation 
parallel computing infrastructures along with ease 
of use. Although the use of Clouds finds its roots 
in IT environments, the idea is gradually entering 
scientific and academic ones. Even when Cloud 
Computing is popular, little research has been 
done with respect to evaluating the benefits of the 
paradigm for scheduling and executing resource 
intensive scientific applications. It is also impor-
tant to note that to date the algorithms designed 
to address job scheduling for Clouds come from 
adaptations of job schedulers for Grids. The reason 
is that researchers have greater knowledge of the 
latter (Kaur, 2011).

Since currently there is a lack of profound 
studies in the literature about the viability of us-
ing Cloud Computing to execute scientific and 
engineering applications from a performance 
standpoint, we have presented in a previous 
work (Pacini et al., 2011) an empirical study on 
the employment of Cloud infrastructures to run 
PSEs using scheduling policies commonly used 
in Clouds (i.e. time-shared and space-shared). The 
results showed when running PSEs in Clouds, 
near-to-ideal speedups can be obtained. We believe 
this line of research could greatly benefit from 
SI-based scheduling approaches to optimize other 
aspects other than speedup.

We are extending this work in several di-
rections. First, we are surveying other types of 
Swarm Intelligence algorithms to job scheduling 
in distributed environment such as Particle Swarm 
Optimization (Kennedy and Eberhart, 1995; Ken-
nedy and Eberhart, 2001), Artificial Fish Swarm 
Algorithm (Li et al., 2002) and Bee Colony Opti-

mization (Lucic and Teodorovic, 2003). We think 
this will not dramatically reshape the comparison 
framework depicted in Table 1, however it will 
certainly enhance our analysis. Second, due to the 
fact that currently there are few efforts devoted 
to job scheduling in Clouds, we aim at design-
ing a new SI-based scheduler that is capable of 
efficiently running PSEs in Cloud Computing 
environments while addressing important aspects 
such as energy consumption and PSE job priori-
ties. We are also planning to embed the resulting 
scheduler into CloudSim (Calheiros et al., 2011) 
in order to provide empirical evidence of its ef-
fectiveness. Eventually, we will implement the 
scheduler on top of a real (not simulated) Cloud 
platform, such as Eucalyptus1, OpenNebula 2and 
Emotive Cloud3.

Finally, an interesting research line has recently 
arisen as a consequence of the astonishingly and in-
creasing number of available mobile devices such 
as smartphones. Nowadays, mobile devices have 
a remarkable amount of computational resources 
that allows them to execute complex applications, 
such as 3D games, and to store large amounts 
of data. In fact, recent work has experimentally 
shown the feasibility of using such devices for 
executing computing intensive scientific codes 
(Rodriguez et al., 2011). Due to these advances, 
emergent research lines have aimed at integrating 
smartphones and other kind of mobile devices 
into traditional distributed computational environ-
ments, such as clusters and Grids (Rodriguez et 
al., 2011b). However, intuitively, job scheduling 
in these highly heterogeneous environments is 
more challenging since mobile devices rely on 
unreliable wireless connections and batteries, 
which is necessary to consider at the scheduling 
level. This will on the other hand provide excellent 
research opportunities for new schedulers based 
on traditional optimization techniques as well as 
SI-based ones.
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KEY TERMS AND DEFINITIONS

Ant Colony Optimization (ACO): Is a class 
of optimization algorithms modeled on the ac-
tions of an ant colony. ACO methods are useful in 
problems that need to find paths to goals. Artificial 
‘ants’ locate optimal solutions by moving through 
a parameter space representing all possible solu-
tions. Real ants lay down pheromones directing 
each other to resources while exploring their en-
vironment. The simulated ‘ants’ similarly record 
their positions and the quality of their solutions, 
so that in later simulation iterations more ants 
locate better solutions.

Cloud Computing: A Cloud is a type of paral-
lel and distributed system consisting of a collec-
tion of inter-connected and virtualized computers 
that are dynamically provisioned and presented 
as one or more unified computing resource(s) 
based on service-level agreements established 

through negotiation between the service provider 
and consumers. Cloud Computing is the delivery 
of computing as a service rather than a product, 
whereby shared resources, software, and informa-
tion are provided to computers and other devices 
as a utility over a network (typically the Internet).

Grid Computing: Is a model of distributed 
computing that uses geographically and admin-
istratively disparate resources. A Grid is a type 
of parallel and distributed system that enables 
the sharing, selection, and aggregation of geo-
graphically distributed ‘autonomous’ resources 
dynamically at runtime depending on their avail-
ability, capability, performance, cost, and users’ 
quality-of-service requirements. Individual users 
can access computers and data transparently, 
without having to consider location, operating 
system, account administration, and other details.

Job Scheduling: Is the process of allocating 
a set of jobs belonging to an application into 
available computing resources. The main objec-
tive is achieving a high system throughput while 
matching application needs with the available 
computing resources.

Load Balancing: Is a computer methodology 
to distribute workload across multiple computers 
to achieve optimal resource utilization, maximize 
throughput, minimize response time, and avoid 
overload. Load balancing divides the amount of 
work that a computer has to do between two or 
more computers so that more work gets done in 
the same amount of time and, in general, all users 
get served faster.

Makespan: Is defined as the amount of time, 
from start to finish for completing a set of jobs, 
i.e. the maximum completion time of all jobs.

Parameter Sweep: a parameter sweep is a 
type of experiment in which multiple datapoints 
are examined by executing an algorithm numerous 
times with different parameter configurations.

Swarm Intelligence (SI): Is a discipline that 
deals with natural and artificial systems composed 
of many individuals that coordinate using decen-
tralized control and self-organization. In particular, 
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SI focuses on the collective behaviors that result 
from the local interactions of the individuals with 
each other and with their environment. Examples 
of systems studied by swarm intelligence are 
colonies of ants and termites, schools of fish, 
flocks of birds, herds of land animals.

ENDNOTES

1. http://www.eucalyptus.com/
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