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Abstract. Parameter Sweep Experiments (PSEs) allow scientists to perform simu-
lations by running the same code with different input data, which typically results in
many CPU-intensive jobs and thus computing environments such as Clouds must be
used. Job scheduling is however challenging due to its inherent NP-completeness.
Therefore, some Cloud schedulers based on Swarm Intelligence (SI) techniques,
which are good at approximating combinatorial problems, have arisen. We describe
a Cloud scheduler based on Ant Colony Optimization (ACO), a popular SI tech-
nique, to allocate Virtual Machines to physical resources belonging to a Cloud.
Simulated experiments performed with real PSE job data and alternative classical
Cloud schedulers show that our scheduler allows a fair assignment of VMs, which
are requested by different users, while maximizing the number of jobs executed
every time a new user connects to the Cloud. Unlike previous experiments with our
algorithm [9], in which batch execution scenarios for jobs were used, the contribu-
tion of this paper is to experiment with our proposal in dynamic scheduling scenar-
ios. Results suggest that our scheduler provides a better balance to the number of
executed jobs per unit time versus serviced users, i.e., the number of Cloud users
that the scheduler is able to successfully serve.

Keywords. Parameter Sweep Experiments, Cloud Computing, multitenancy, job
scheduling, Ant Colony Optimization

1. Introduction

Scientists and engineers are more and more faced to the need of computational power
to satisfy the ever-increasing resource intensive nature of their experiments. An exam-
ple of these experiments is Parameter Sweep Experiments, or PSEs for short. PSEs con-
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sist of the repeated execution of the same code application with different input parame-
ters resulting in different outputs. When designing PSEs, it is necessary to generate all
possible combinations of input parameters, which is a time-consuming task. Besides, it
is not straightforward to provide a general solution, since each problem has a different
number of parameters and each of them has its own variation interval. Running PSEs in-
volves managing many independent jobs [10], since the experiments are executed under
multiple initial configurations a large number of times.

A concrete example of PSE is the one presented by Careglio et al. [5], which ana-
lyzes the influence of some geometric imperfections in the response of a simple tensile
test on steel bars subject to large deformations. The authors numerically simulate the test
by varying some parameters of interest, namely size and type of geometric imperfec-
tions. By varying these parameters, different sub-studies were obtained, which were run
on different machines in parallel.

PSEs have the major advantage of generating lists of independent jobs. This makes
these kinds of studies embarrassingly parallel from a computational perspective. Further,
only at the beginning and end of each instance of a job, network transfer –usually input
and output files– from and to a central client machine is necessary. However, due to the
complexity of the problem setup often a large number of compute-intensive calculations
are necessary. Therefore, these types of applications are perfectly suited for distributed
computing. A parallel environment that is gaining momentum are Clouds [3], which pro-
vides computing resources that are delivered as a service over a network, typically Inter-
net. Although the use of Clouds finds its roots in IT environments, the idea is gradually
entering scientific and academic ones [18], particularly to handle PSEs.

Since Cloud Computing can be considered as a pool of virtualized computing re-
sources, it allows the dynamic scaling of applications by provisioning of resources via
virtualization. The various Virtual Machines (VM) are distributed among different phys-
ical resources or consolidated to the same machine in order to increase their utilization.
To perform this, scheduling the basic processing units on a Cloud Computing environ-
ment is an important issue and it is necessary to develop efficient scheduling strategies to
appropriately allocate the VMs in physical resources. In this work, “scheduling” refers
to the way VMs are allocated to run on the available computing resources, since there are
typically many more VMs running than physical resources. However, scheduling is an
NP-complete [23] problem and therefore it is not trivial from an algorithmic standpoint.

In recent years, Swarm Intelligence (SI) has received increasing attention, and refers
to the collective behavior that emerges from a swarm of social insects [2]. Social insect
colonies collectively solve complex problems by intelligent methods. These problems
are beyond the capabilities of each individual insect, and the cooperation among them is
largely self-organized without any central supervision. Inspired by these capabilities, re-
searchers have proposed algorithms or theories for combinatorial optimization problems.
Moreover, scheduling in Clouds is also a combinatorial optimization problem, and some
schedulers in this line that exploit Swarm Intelligence have been proposed.

The scheduling method proposed in this paper is aimed to, on one hand, maximize
the number of jobs that are executed per user in a dynamic Cloud, i.e., a Cloud in which
many users join the Cloud at different times to submit their jobs. On the other hand, we
aim at maximizing the throughput of serviced users among all users that are connected to
the Cloud. To achieve these objectives we propose a scheduler based on Ant Colony Op-
timization (ACO), the most popular Swarm Intelligence technique and that is essentially



a Cloud-wide Virtual Machine (VM) allocation policy to map VMs to physical hosts.
This work is an enhanced version of the previous paper presented at workshop held at
Cetraro [9] that discusses multitenancy job scheduling. The algorithm was optimized in
order to improve the trade-off between the number of serviced users, and the number
of executed jobs by each one of them per unit time. Experiments performed by using
the CloudSim toolkit [4], together with job data extracted from a real-world PSE and
classical scheduling policies for Clouds show that our algorithm effectively achieves a
good balance of the number of serviced users at the same time that executes an average
number of jobs per user very acceptable compared with other competitors.

The rest of the paper is as follows. Section 2 gives some background necessary to
understand the concepts underpinning our scheduler. Section 3 presents our proposal, in-
cluding at the same time the extensions carried out to the previous version of our ACO-
based scheduler. Section 4 presents a detailed evaluation of the scheduler. Section 5 dis-
cusses relevant related works. Section 6 concludes the paper.

2. Background

Cloud Computing [3] is a recent, new computing paradigm where applications, data and
IT services are provided across dynamic and potentially geographically dispersed orga-
nizations. Clouds refers to a set of technologies that offer computing services through
the Internet, i.e., everything is provided as a service. A Cloud provides computational
resources in a highly dynamic and scalable way and offers to end-users a variety of ser-
vices covering the entire computing stack. Within a Cloud, slices of computational power
in networked servers are offered with the intent of reducing the owning costs and op-
erating these resources in situ. Besides, the spectrum of configuration options available
to scientists, such as PSEs users, through Cloud services is wide enough to cover any
specific need from their research. One important feature of Cloud Computing is their
elasticity, i.e., the ability to scale up and down the infrastructure according to resource
requirements of the users or applications.

2.1. Cloud infrastructures and job scheduling basics

Cloud Computing is often regarded as a pool of virtualized computing resources with
dynamic composition and deployment of software services. Virtualization refers to the
capability of a software system of emulating various operating systems. Clouds allow
the dynamic scaling of users applications by provisioning of computing resources via
machine images, or virtual machines (VM). The VMs can be easily distributed to dif-
ferent physical machines or consolidated to the same machine in order to balance the
load or simply increase the CPU utilization. VMs are provided to users on a pay-per-use
basis, i.e., based on cycles of CPU consumed, bytes transferred, etc. In addition, users
can customize the execution environments or installed software in the VMs according to
the needs of their experiments.

In contrast to job traditional job scheduling (e.g., on clusters) wherein executing
units are mapped directly to physical resources at one (middleware) level, on a virtual-
ized environment the resources need to be scheduled at two levels as it is depicted in
Figure 1. In the first level, one or more Cloud infrastructures are created and through a



VM scheduler the VMs are allocated into real hardware. In the second level, by using job
scheduling techniques, jobs are assigned for execution into virtual resources. Broadly,
job scheduling is a mechanism that maps jobs to appropriate resources to execute, and
the delivered efficiency will directly affect the performance of the whole distributed en-
vironment. Furthermore, Figure 1 illustrates a Cloud where one or more scientific users
are connected via a network and require the creation of a number of VMs for executing
their experiments (a set of jobs).

Job1 Job2 Job3 JobN

User M

LAN/WAN

Job Scheduler

VM Scheduler

Job4
...

Logical, user-owned

clusters (VMs)

Physical

resources

User 1 User 2
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Figure 1. High-level view of a Cloud

From the perspective of domain scientists, there is a great consensus on the fact that
the complexity of traditional distributed computing environments such as clusters and
Grids should be hidden so scientists can focus on their main concern, i.e., to execute
their experiments [22]. For scientific applications in general, the use of virtualization has
shown to provide many useful benefits, including user-customization of system software
and services, performance isolation, check-pointing and migration, better reproducibility
of scientific analyses, and enhanced support for legacy applications [11]. Precisely, for
parametric studies, or scientific applications in general, the value of Cloud Computing as
a tool to execute complex applications has been already recognized within the scientific
community [22].

Although the use of Cloud infrastructures helps scientific users to run complex appli-
cations, job and VM management is a key concern that must be addressed. Particularly,
in this work we focus on the second level of scheduling in order to more efficiently solve
the allocation of VMs to physical resources in a dynamic multi users Cloud. The goals to
be achieved are to maximize the trade-off between the throughput of serviced users and
the number of jobs executed by each user that is connected to the Cloud. However, job
scheduling is NP-complete [23], and therefore approximation heuristics are necessary.



The scheduling taxonomy in distributed computing systems described by Casavant
et al. [6] classifies algorithms into optimal and sub-optimal. Sub-optimal algorithms in
turn are classified into heuristic or approximate. Heuristic algorithms, unlike approxi-
mate ones, make as few assumptions as possible both the distributed environment (e.g.,
hardware capabilities) and the resource needs (e.g., time required by each job on each
computing resource). In practice, it is difficult to estimate job duration accurately since
the runtime behavior of a job is unpredictable.

Clouds, as well as other distributed environments, is not free from the problem of
accurately estimate aspects such as duration of jobs and resource load. Due to the fact that
optimal and sub-optimal-approximate algorithms, such as those based on graphs, need
information beforehand to perform correctly, heuristic algorithms are preferred to solve
this problems. One of the aspects that particularly makes SI techniques interesting for
distributed scheduling is that they perform well in approximating optimization problems
without requiring too much information on the problem beforehand. The SI concept is
described in the next subsection.

2.2. SI techniques for Cloud scheduling

Due to bio-inspired techniques have been effective in combinational optimization prob-
lems, they result good alternatives to achieve the goals proposed in this work. Swarm
Intelligence (SI) has received increasing attention in the last years for solving this type
of problems [17]. Using SI problems are solved by algorithmic skills inspired by nature.
The advantage of SI derives from their ability to explore solutions in large search spaces
in a very efficient way. All in all, using this type of heuristics remains an interesting
approach to cope in practice with the NP-completeness of job scheduling problems.

Ant Colony Optimization (ACO) is the most popular SI technique due to their ver-
satility. The ACO algorithm [7] arise from the way real ant behave in nature, i.e., from
the observation of ant colonies when they search the shortest paths to reach a food source
from their nest. In nature, ants move randomly from one place to another to search for
food, and upon finding food and returning to their nest each ant leaves an hormone –
called pheromone– that lures other ants to the same course. When more ants choose the
same path, the pheromone trail is reinforced. This positive feedback leaves all the ants
to follow a single and the shorter path. On the other hand, if over time ants do not visit
a certain path, pheromone trails start to evaporate, thus reducing their attractive strength.
From an algorithmic point of view, the pheromone evaporation process is useful for
avoiding the convergence to a local optimum solution.

Figure 2 shows two possible nest-food source paths, but one of them is longer than
the other one. Figure 2 (a) shows how ants will start moving randomly at the beginning
to explore the ground and then choose one of two paths. The ants that follow the shorter
path will naturally reach the food source before the others ants, and in doing so the
former group of ants will leave behind them a pheromone trail. The ants that perform the
round trip faster, strengthen more quickly the quantity of pheromone in the shorter path,
as shown in Figure 2 (b). The ants that reach the food source through the slower path
will find attractive to return to the nest using the shortest path. Eventually, most ants will
choose the left path as shown in Figure 2 (c).

Precisely, the above behavior has inspired ACO to be applied to optimization prob-
lems. ACO uses a colony of artificial ants that cooperatively search shorter paths (solu-



Figure 2. Adaptive behavior of ants

tions) and reinforce them employing artificial pheromone trails in order to find the opti-
mal ones. In the algorithm, at each execution step, ants compute a set of feasible moves
and select the best one (according to some probabilistic rules) to carry out all the tour.
The transition probability for moving from a place to another is based on the heuristic in-
formation and pheromone trail level of the move. The higher the value of the pheromone
and the heuristic information, the more profitable it is to select this move and resume the
search.

All ACO algorithms adapt the algorithm scheme explained next. After initializing
the pheromone trails and control parameters, a main loop is repeated until a stopping
criterion is met (e.g., a maximum number of iterations or a given time limit without
improving the result). In the main loop of the algorithm ants construct feasible solutions
and update the associated pheromone trails. Furthermore, partial problem solutions are
seen as nodes (an abstraction for the location of an ant): each ant starts to travel from a
random node and moves from a node i to another node j of the partial solution. At each
step, the ant k computes a set of feasible solutions to its current node and moves to one
of these expansions, according to a probability distribution. For an ant k the probability
pk

i j to move from a node i to a node j is pk
i j =

τi j .ηi j
∑q∈allowedkτiqηiq

if j ∈ allowedk, or pk
i j = 0

otherwise. In the formula, ηi j is the attractiveness of the move as computed by some
heuristic information indicating a prior desirability of that move. τi j is the pheromone
trail level of the move, indicating how profitable it has been in the past to make that
particular move. Finally, allowedk is the set of remaining feasible nodes.

To conclude, the higher the pheromone value and the heuristic information, the more
profitable it is to include state j in the partial solution. The initial pheromone level is a
positive integer τ0. In nature, there is not any pheromone on the ground at the beginning
(i.e. τ0 = 0). However, the ACO algorithm requires τ0 > 0, otherwise the probability to
chose the next state would be pk

i j = 0 and the search process would stop from the begin-
ning. Furthermore, the pheromone level of the elements of the solutions is changed by
applying an update rule τi j← ρ.τi j +∆τi j, where 0 < ρ < 1 models pheromone evapora-
tion and ∆τi j represents additional added pheromone.

In practice, to solve distributed job scheduling problems in traditional distributed
environments such as clusters or Grids, the ACO algorithm assigns jobs to available
physical machines. Moreover, each job can be carried out by an ant. Ants then cooper-
atively search for example the less-loaded machines with sufficient available resources
and transfer the jobs to these machines.



3. Approach

The proposed Cloud scheduler is mainly concerned with the following: managing an
online Cloud where different users connect to the Cloud at different times to submit
their experiments. The scheduler aims to keep the CPUs of physical hosts as busy as
possible to serve as many users as possible, and moreover, to maximize the throughput
of jobs, i.e., the average number of jobs that complete their execution every time a user is
connected to the Cloud. Another goal is to serve as much users as possible in the process.

Conceptually, the scheduling problem to tackle down can be formulated as follows.
A number of users are connected to the Cloud at different times to execute their PSEs. To
perform this, each user requests to the Cloud the creation of v VMs. A PSE is formally
defined as a set of N = 1,2, ...,n independent jobs, where each job corresponds to a par-
ticular value for a variable of the model being studied by the PSE. The jobs are executed
on the v machines created by the corresponding user. Due to the fact that the total num-
ber of VMs required by all users is greater than the number of Cloud physical resources,
a strategy that achieves a good use of these physical resources must be implemented.
This strategy is implemented at the Datacenter (Cloud infrastructure) level.

Figure 3 illustrates the sequence of actions from the time of creating VMs for execut-
ing a PSE until the jobs are processed and executed. The User entity represents both the
creators of a virtual Cloud (i.e. VMs on top of physical hosts) and the disciplinary users
that submits their experiments for execution. The Datacenter entity manages a number
of Hosts entities, i.e. a number of physical resources. The VMs are allocated to hosts
through an AllocationPolicy, which implements the SI-based part of the scheduler pro-
posed in this paper. After setting up the virtual infrastructure, an user can send the jobs
his/her experiment comprises to be executed. The jobs will be handled through a JobPol-
icy that will send the user’s PSEs to available VMs already issued by the user and allo-
cated to a host. As such, our scheduler operates at two levels: Cloud or Datacenter level,
where SI techniques (currently ACO) are employed to allocate user VMs to resources,
and VM-level, where the jobs are assigned to VMs by a first in, first out (FIFO) policy.
This sequence of actions is repeated every time an user is connected to the Cloud. As
mentioned at the beginning of the paper, we are not concerned in this study with the way
jobs are handled within VMs but how these latter are handled within the entire Cloud.
However, in the current support, it is possible to plug different job handling policies. To
implement the Cloud-level logic of the scheduler, AntZ, the algorithm proposed in [14]
to solve the problem of load balancing in Grid environments has been adapted to be used
in Clouds (see algorithm in Table 1 (left)). AntZ combines the idea of how ants cluster
objects with their ability to leave pheromone trails on their paths so that it can be a guide
for other ants passing their way.

In our adapted algorithm, each ant works independently and represents a VM “look-
ing” for the best host to which it can be allocated. The main procedure performed by
an ant is shown in algorithm in Table 1 (left). When a VM is created, an ant is initial-
ized and starts to work. A master table containing information on the load of each host
is initialized (initializeLoadTable()). Subsequently, if an ant associated to the VM
that is executing the algorithm already exists, the ant is obtained from a pool of ants
through getAntPool(vm) method. If the VM does not exist in the ant pool, then a new
ant is created. To do this, first, a list of all suitable hosts in which can be allocated the
VM is obtained. A host is suitable if it has an amount of processing power, memory and
bandwidth greater than or equal to that of required by the wandering VM.



User Datacenter PhysicalResource VMAllocationPolicy JobJobPolicy

vmList=createVMs()

allocate(vmList,hostList)

[while !vmList.isEmpty()] allocateVmToHost(vm,host)

jobList=createJobs()

scheduleJob(job,vm)

[while !jobList.isEmpty()] submitJobToVm(job,vm)

executeJob(job)

Figure 3. Sequence diagram of scheduling actions within a Private Cloud

Then, the working ant and its associated VM is added to the ant pool (antPool.add-
(vm,ant)) and the ACO-specific logic starts to operate (see algorithm in Table 2 (left)).
In each iteration of the sub-algorithm, the ant collects the load information of the host
that is visiting –through the getHostLoadInformation() operation– and adds this in-
formation to its private load history. The ant then updates a load information table of
visited hosts (localLoadTable.update()), which is maintained in each host. This ta-
ble contains information of the own load of an ant, as well as load information of other
hosts, which were added to the table when other ants visited the host. Here, load refers
to the total CPU utilization within a host and is calculated taking into account the num-
ber of VMs that are executing at a moment in each physical host. To calculate the load,
the original AntZ algorithm receives the number of jobs that are executing in the Grid
resource in which the load is being calculated, and it is calculated taking into account the
amount available of MIPS in each processing element. In our proposed algorithm, the
load is calculated on each host taking into account the CPU utilization made by all the
VMs that are executing on each host. This metric is useful for an ant to choose the least
loaded host to allocate its VM.

When an ant moves from one host to another it has two choices: moving to a random
host using a constant probability or mutation rate, or using the load table information
of the current host (chooseNextStep()). The mutation rate decreases with a decay
rate factor as time passes, thus, the ant will be more dependent on load information
than to random choice. This process is repeated until the finishing criterion is met. The
completion criterion is equal to a predefined number of steps (maxSteps). Finally, the ant
delivers its VM to the current host and finishes its task. Due to the fact that each step
performed by an ant involves moving through the network, we have added a control to
minimize the number of steps that an ant performs: every time an ant visits a host that
has not yet allocated VMs, then the ant allocates its associated VM to it directly without
performing further steps. When the ant has not completed its work, i.e. the ant can not
allocate its associated VM to a host, then the procedure is repeated with the same ant
until the ant finally achieves the “finished” state.

Every time an ant visits a host, it updates the host load information table with the
information of other hosts, but at the same time the ant collects the information already
provided by the table of that host, if any. The load information table acts as a pheromone



Table 1. ACO-based allocation algorithm for individual VMs (left) and the SubmitJobsToVMs procedure
(right)

Procedure A C O a l l o c a t i o n P o l i c y (vm , h o s t L i s t )
Begin

i n i t i a l i z e L o a d T a b l e ( )
a n t = g e t A n t P o o l (vm)
i f ( a n t == n u l l ) then

s u i t a b l e H o s t s =
g e t S u i t a b l e H o s t s F o r V m ( h o s t L i s t , vm)

a n t =new Ant (vm , s u i t a b l e H o s t s )
a n t P o o l . add (vm , a n t )

end i f
r ep ea t

a n t . An tAlgor i thm ( )
u n t i l a n t . i s F i n i s h ( )
a l l o c a t e d H o s t = h o s t L i s t . g e t ( a n t . g e t H o s t ( ) )
a l l o c a t e d H o s t . a l loca teVM ( a n t . getVM ( ) )

End

Procedure SubmitJobsToVMs ( j o b L i s t )
Begin

vmIndex =0
whi le ( j o b L i s t . s i z e ( ) > 0 )

j o b = j o b L i s t . g e t N e x t J o b ( )
vm= getVMsLis t ( vmIndex )
vm . scheduleJobToVM ( j o b )
to ta lVMs = getVMsLis t ( ) . s i z e ( )
vmIndex=Mod( vmIndex +1 , to ta lVMs )
j o b L i s t . remove ( j o b )

end whi l e
End

trail that an ant leaves while it is moving, to guide other ants to choose better paths rather
than wandering randomly in the Cloud. Entries of each local table are the hosts that ants
have visited on their way to deliver their VMs together with their load information.

When an ant reads the information in the load table in each host through and chooses
a direction via the algorithm in Table 2 (right), the ant chooses the lightest loaded host in
the table, i.e. each entry of the load information table is evaluated and compared with the
current load of the visited host. If the load of the visited host is smaller than any other
host provided in the load information table, the ant chooses the host with the smallest
load, and in case of a tie the ant chooses one with an equal probability.

Once the VMs have been allocated in physical resources, the scheduler proceeds to
assign the jobs to these VMs. To do this, jobs are assigned to VMs according to the al-
gorithm in Table 1 (right). This represents the second scheduling level of the scheduler
proposed as a whole. This sub-algorithm uses two lists, one containing the jobs that have
been sent by the user, i.e., a PSE, and the other list contains all user VMs that are already
allocated to a physical resource and hence are ready to execute jobs. The algorithm it-
erates the list of all jobs –jobList– and then, through getNextJob() method retrieves
jobs by a FIFO policy. Each time a job is obtained from the jobList it is submitted to be
executed in a VM in a round robin fashion. The VM where the job is executed is obtained
through the method getVMsList(vmIndex). Internally, the algorithm maintains a queue
for each VM that contains its list of jobs to be executed. The procedure is repeated until
all jobs have been submitted for execution, i.e. when the jobList is empty.

4. Evaluation

In order to assess the effectiveness of our proposal in a non-batch, realistic Cloud envi-
ronment where multiple users are dynamically connected to execute their PSEs, we have
processed a real case study for solving a well-known benchmark problem discussed by
the work [10] for instance. The experimental methodology involved two steps. First, we
executed the problem in a single machine by varying an individual problem parameter
by using a finite element solver, which allowed us to gather real job processing times
and input/output data sizes (see Section 4.1). Then, by means of the generated job data,
we instantiated the CloudSim simulation toolkit, which is explained in Section 4.2. The
obtained results regarding the performance of our proposal compared to some Cloud
scheduling alternatives are reported in Section 4.3.



Table 2. ACO-specific logic: Core logic (left) and ChooseNextStep procedure (right)
Procedure AntAlgor i thm ( )
Begin

s t e p =1
i n i t i a l i z e ( )
While ( s t e p < maxSteps ) do

c u r r e n t L o a d = g e t H o s t L o a d I n f o r m a t i o n ( )
A n t H i s t o r y . add ( c u r r e n t L o a d )
l o c a l L o a d T a b l e . u p d a t e ( )
i f ( c u r r e n t L o a d = 0 . 0 )

b r e a k
e l s e
i f ( random ( ) < m u t a t i o n R a t e ) then

n e x t H o s t = randomlyChooseNextS tep ( )
e l s e

n e x t H o s t = c h o o s e N e x t S t e p ( )
end i f
m u t a t i o n R a t e = m u t a t i o n R a t e−decayRa te
s t e p = s t e p +1
moveTo ( n e x t H o s t )

end whi l e
de l ive rVMtoHos t ( )

End

Procedure ChooseNextStep ( )
Begin

b e s t H o s t = c u r r e n t H o s t
b e s t L o a d = c u r r e n t L o a d
f o r each e n t r y in h o s t L i s t

i f ( e n t r y . l o a d < b e s t L o a d ) then
b e s t H o s t = e n t r y . h o s t

e l s e i f ( e n t r y . l o a d = b e s t L o a d ) then
i f ( random . n e x t < p r o b a b i l i t y ) then

b e s t H o s t = e n t r y . h o s t
end i f

end i f
end f o r

End

4.1. Real job data gathering

The problem considered in García Garino et al. [10] and references therein, involves
studying a plane strain plate with a central circular hole. In our case, the dimen-
sions of the plate were 18 x 10 m, with R = 5 m. Material constants considered were
E = 2.1 105 Mpa, ν = 0.3, σy = 240 Mpa and H = 0. A linear Perzyna viscoplastic
model with m = 1 and n = ∞ was considered. Unlike previous studies of our own [5],
in which a geometry parameter –particularly imperfection– was chosen to generate the
PSE jobs, in this case a material parameter was selected as the variation parameter. Then,
20 different viscosity values for the η parameter were considered, namely α∗10β (with
α = 1,2,3,4,5,7 and β = 4,5,6) in addition 1.107 and 2.107 Mpa. Details on viscoplas-
tic theory and numerical implementation considered can be found in [10]. The finite ele-
ment mesh used has 1,152 elements and Q1/P0 elements were chosen. Imposed displace-
ments (at y=18m) were applied until a final displacement of 2,000 mm was reached in
400 equal time steps of 0.05 mm each. It is worth noting that ∆t = 1 has been set for all
the time steps.

After establishing the problem parameters, we employed a single machine to run
the parameter sweep experiment by varying the viscosity parameter η as indicated and
measuring the execution time for the 20 different experiments, which resulted in 20 in-
put files with different input configurations and 20 output files. The tests were solved
using the SOGDE finite element software [8]. Furthermore, the machine on which the
tests were carried out had an AMD Athlon(tm) 64 X2 Dual Core Processor 3600+, with
2 GBytes of RAM, 400 Gbytes of storage, and a bandwidth of 100 Mbps. The machine
was equipped with the Linux operating system (specifically an Ubuntu 11.04 distribu-
tion) running the generic kernel version 2.6.38-8. The information regarding machine
processing power was obtained from the native benchmarking support of Linux and as
such is expressed in MIPS (Million Instructions per Second), a metric that indicates how
fast a computer processor runs. The machine had 4,008.64 MIPS. It is worth noting that
only one core was used during the experiments.

Once the execution times were obtained from the real machine, we approximated
for each experiment the number of executed instructions by the following formula NIi =
mipsCPU ∗ Ti, where NIi is the number of million instructions to be executed by or



associated to a job i, mipsCPU is the processing power of the CPU of our real machine
measured in MIPS, and Ti is the time that took to run the job i on the real machine. For
example, for a 117 seconds job, the approximated number of instructions for the job was
469,011 MI (Million Instructions).

4.2. CloudSim instantiation

First, the CloudSim simulator [4] was configured with a datacenter composed of a sin-
gle machine –or “host” in CloudSim terminology– with the same characteristics as the
real machine where the experiments were performed. As such, the characteristics were
4,008 MIPS (processing power), 4 GBytes (RAM), 400 GBytes (storage), 100 Mbps
(bandwidth), and 4 PEs (or cores). Each PE had the same processing power.

Once configured, and to ensure significance, we checked that the simulated execu-
tion times were close to real times for each independent job performed on the real ma-
chine, which was successful. Once the single-machine execution times from CloudSim
were validated, a new simulation scenario was set. This new scenario consisted of a dat-
acenter with 10 hosts, where each has the same hardware capabilities as the real single
machine. Then, each user connecting to the Cloud requests v VMs to execute their PSE,
each with one virtual PE of 4,008 MIPS, 512 Mbyte of RAM, a machine image size
of 100 Gbytes and a bandwidth of 5 Mbps. This is a moderately-sized, homogeneous
datacenter that can be found in many real scenarios [16,15].

To evaluate the performance in the simulated Cloud we have modeled a dynamic
Cloud scenario in which new users connect to the Cloud every s seconds, where s =
60,90,120, and requires the creation of 10 VMs in which run their PSE, i.e., a set of 20
jobs. This is, the base job set comprising 20 jobs that was obtained by varying the value
of η. The number of users who connect to the Cloud varies as u= 10,20, ...,80, and since
each user executes one PSE –20 jobs–, the total number of jobs to execute is increased
as n = 20∗u each time.

Each job, called cloudlet by CloudSim, was determined by a length parameter or
the number of instructions to be executed by the cloudlet in MI, which varied between
244,527 and 469,011. Moreover, another parameter was PEs, or the number of process-
ing elements (cores) required to perform each individual job. Each cloudlet required one
PE since jobs are sequential (not multi-threaded). Finally, the experiments had input files
of 93,082 bytes and output files of 2,202,010 bytes.

In CloudSim, the amount of available hardware resources for each VM is con-
strained by the total processing power, RAM, storage and system bandwidth available
within the associated host. Thus, scheduling policies must be applied in order to appro-
priately assign VMs to hosts and achieve efficient use of resources. In addition, CloudSim
allows users to easily configure different VM scheduling policies. This allowed us to
experiment with the scheduler proposed in this paper and compare it against CloudSim
built-in schedulers. The next section explains the associated obtained results in detail.

4.3. Performed experiments

In this subsection we report the obtained results when executing PSEs submitted by
multiple users in the simulated Cloud by using our two-level scheduler and two classical
Cloud scheduling policies for assigning VMs to hosts and handling jobs. Due to their



high CPU requirements, and the fact that each VM requires only one PE, we assumed a
1-1 job-VM execution model, i.e. jobs within a VM waiting queue are executed one at a
time by competing for CPU time with other jobs from other VMs in the same hosts (time-
shared CPU scheduling). Moreover, our proposed algorithm is compared with another
two schedulers:

• Random, a simple scheduling algorithm in which the VMs requested by the dif-
ferent users are assigned randomly to different physical resources. Although this
algorithm does not take good decisions about how to allocate the VMs to physical
resources, it provides a good benchmark in order to compare and see how our
proposed VM allocation algorithm improve the performance compared to random
assignment.

• Best effort (BE), is a policy that chooses, as the host for a VM, the host with
less PEs in use. Every time a user requests the allocation of a VM, the broker
sends a message to all hosts to know their states and get one with less PEs in
use. A broker represents an entity acting on behalf of a user. A broker hides the
VM management, such as VM creation, submission of jobs to the created VMs
and destruction of VMs. On the other hand, the state of a resource represents the
number of free PEs.

In our ACO scheduler, we have set the ACO-specific parameters with the following val-
ues: mutation rate = 0.6, decay rate = 0.1 and maximum steps = 8. In all cases, the
considered algorithms use the same VM-level policy for handling jobs within VMs (i.e.,
FIFO with round robin), and the VMs allocated to a single host (i.e., time-shared [18]).

Although BE needs to send messages to hosts every time a VM is required to know
the hosts states and to decide where to allocate the VM, this process is not actually
modeled in CloudSim. In the above process the number of messages sent every time the
allocation of a VM is requested should be equal to the total number of physical resources,
i.e., sending a message for each host to get the number of free PEs so as to allocate the
VM to the host that has the highest number of free PEs.

Because the current implementation of BE keeps a vector containing free PEs in-
formation for each host, and the algorithm assumes that these PEs are exclusive to PSE
job processing and can not be allocated externally (i.e., by computations external to the
owner of the Cloud), BE always can do the best possible allocation since it has informa-
tion beforehand. In this work we consider BE as the best opponent to which we can com-
pare our scheduler against. It is worth consider, however, that our algorithm makes less
use of the network. For this, we have set the maximum number of steps that an ant carries
out to allocate a single VM to 8, i.e., ACO sends a maximum of 8 messages per VM
allocation versus the 10 messages BE would send if properly simulated or implemented.
When ACO finds an unloaded host allocates a VM and does not perform any further step.
For the configuration of our proposed scenario this reduction in the number of steps, i.e.,
messages, is an improvement in network usage of 20% in terms of transmitted messages.

In our previous work presented at HPC 2012 in Cetraro [9], was considered a batch
mode scenario and the goal was minimizing the flowtime and makespan of all jobs sub-
mitted by one user. In this work, unlike [9], an online scenario in which many users
are connected to the Cloud is evaluated. In an online Cloud, the rate at which jobs are
processed is arguably as important as the scheduler processes all users requests. It is for
this reason that the goals to achieve have been redefined. To evaluate job rate execution,
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Figure 4. Results as the number of users online increases: Number of serviced users

and since each competing algorithm is capable of actually executing different numbers
of jobs, we have used alternative metrics other than makespan and flowtime to compare
scheduler performance.

Below, the experiments have been performed with the aim of maximizing the
trade-off between the number of serviced users by the Cloud –among all users that
are connected to the Cloud– and the throughput of jobs that are executed each
time a new user connects to the Cloud. The number of executed jobs for each user
U in the time i was calculated as NumberJobUi = TotalNumberExecutedJobsi −
TotalNumberExecutedJobsi−1. Irrespective of the metric, in this work we show average
results which arises from averaging 10 times the execution of each algorithm.

Figures 4, 5 and 6 illustrate the number of serviced users by the Cloud, the number
of executed jobs by user and the number of created VMs by each algorithm, respectively.
Sub-figures in Figures 4 5 and 6 represent the cases when a constant number of users are
joined to Cloud every 60, 90 and 120 seconds.

Among all approaches, BE is the algorithm that serves fewer users but executes a
number of jobs by user (job rate) greater than Random and ACO. Random serves more
users than ACO and BE but with lower job rate. Here, it is important to note that while
Random serves as many users may not be fair with the response times for users. The
reason behind this is that the Random algorithm assigns randomly the VMs to physical
resources, and many of the creations of the VMs requested by users can fail. There are
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Figure 5. Results as the number of users online increases: Number of executed jobs per user

situations where for a single user Random is able to create only one VM where all jobs of
the user are executed. This situation means that the user must wait too long to complete
their jobs and thus loses the benefit of running into a Cloud. Finally, ACO performs the
best balance with respect to all metrics in question. Table 3 summarizes the position of
ACO for each metric with respect BE and Random. ACO algorithm is, on one hand, the
algorithm with the best trade-off between the number of serviced users and the number
of executed jobs with respect to BE, and on the other hand, ACO offers the best trade-off
between the number of executed jobs by user and the number of created VMs with respect
to the number of serviced users of Random. These results are encouraging because they
indicate that ACO is very close to obtaining the best possible solution but making less
use of the network, due to the fact that ACO sends at least 20% fewer network messages
than BE, which has an acknowledgeable impact on performance if properly modeled in
the simulation.

The reason that the schedulers can not serve all users that connect to the Cloud is
because the attempt to create VMs fails when the user requests them. The creation of
some VMs fails since at the moment a user issues the creation, all physical resources are
already fully busy with VMs belonging to other users. Depending on the algorithm and
according to the results, some schedulers are able to find to some extent a host with free
resources to which at least one VM per user is allocated.
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Figure 6. Results as the number of users online increases: Number of created VMs

Serviced Users Executed Jobs Created VMs

Random BE BE

ACO ACO ACO

BE Random Random

Table 3. Position of ACO results with respect to BE and Random

Tables 4, 5 and 6 shows the reductions or gains obtained by BE algorithm regarding
ACO and Random when a constant number of users join to the Cloud every 60, 90 and
120 seconds, respectively. The gain is calculated considering the number of executed
jobs for each group of users u = 10,20, ...,80, i.e., %GainUsersu=10,20,30,40,50,60,70,80 =

100− (numberExecutedJobsu(ACO&Random)∗100
(numberExecutedJobsu(bestE f f ort)) .

Some observations are that, when 10 users join to the Cloud every 60 seconds the
gain of BE with respect to ACO is 6.09% and with respect to Random is 15.22%. This
result indicates that ACO is much closer to BE than Random. Moreover, in the worst case
– when the number of users is 20 and they are connected to the Cloud every 60 seconds–
BE wins to ACO in 12.73% but Random loses in the worst case by 26.57%.

The highest gains in terms of number of executed jobs of BE compared to ACO were
achieved when users were connected to the Cloud every 90 seconds and reaches 12.80%



Table 4. % Gain of BE regarding ACO and Random.

Scheduler Constant number of users connected each time every 60 seconds

10 20 30 40 50 60 70 80

BE (executed jobs) 4.60 4.95 3.53 3.03 2.76 2.53 2.37 2.23

ACO (executed jobs) 4.32 4.32 3.36 2.99 2.70 2.46 2.07 2.02

Gain BE w.r.t. ACO (0-100%) 6.09 12.73 4.81 1.24 2.03 2.96 12.71 9.27

BE (executed jobs) 4.60 4.95 3.53 3.03 2.76 2.53 2.37 2.23

Random (executed jobs) 3.90 3.64 3.32 2.90 2.68 2.31 2.21 1.87

Gain BE w.r.t. Random (0-100%) 15.22 26.57 5.94 4.30 2.97 9.01 6.99 15.79

Table 5. % Gain of BE regarding ACO and Random.

Scheduler Constant number of users connected each time every 90 seconds

10 20 30 40 50 60 70 80

BE (executed jobs) 6.30 5.90 4.63 4.05 3.60 3.23 2.86 2.63

ACO (executed jobs) 6.05 5.15 4.14 3.88 3.48 2.97 2.90 2.77

Gain BE w.r.t. ACO (0-100%) 3.97 12.80 10.72 4.26 3.33 8.04 -1.40 -5.48

BE (executed jobs) 6.30 5.90 4.63 4.05 3.60 3.23 2.86 2.63

Random (executed jobs) 5.53 4.77 3.89 3.41 3.35 2.92 2.85 2.69

Gain BE w.r.t. Random (0-100%) 12.22 19.15 16.12 15.86 6.89 9.85 0.25 -2.48

Table 6. % Gain of BE regarding ACO and Random.

Scheduler Constant number of users connected each time every 120 seconds

10 20 30 40 50 60 70 80

BE (executed jobs) 7.90 6.95 5.80 4.98 4.36 3.68 3.41 3.21

ACO (executed jobs) 7.72 6.23 5.23 4.48 4.12 3.74 3.46 3.24

Gain BE w.r.t. ACO (0-100%) 2.28 10.36 9.89 10.05 5.55 -1.54 -1.34 -0.86

BE (executed jobs) 7.90 6.95 5.80 4.98 4.36 3.68 3.41 3.21

Random (executed jobs) 7.06 5.59 4.95 4.28 3.77 3.66 3.23 3.15

Gain BE w.r.t Random (0-100%) 10.63 19.57 14.71 14.07 13.62 0.63 5.40 1.95

(when up to 20 users had connected). When users are connected further distanced in
time, in our experiments every 120 seconds, the gains percentages of BE decreases. This
is sound since adding more users to the environment under test ends up saturating its
execution capacity, and thus BE scheduling decisions have less impact on the outcome.
This also happens because BE is not an adaptive algorithm like ACO. BE use all available



resources to serve the first users connecting to the Cloud leaving without serving the
other. An observation is that in some cases –the cells with negative percentage values in
Tables 5 and 6–, ACO wins to BE. These results are very encouraging because it means
that ACO, to be an adaptive algorithm, when the number of users increases it achieves a
better service to users than BE executing a greater number of jobs.

On the other hand, ACO is more fair with the number of users served, and moreover
improves when the number of users connected to Cloud every 90 and 120 seconds is
larger. In the best case, when users are joined to the Cloud every 120 seconds, the number
of serviced users reaches approximately 27.

As it has been shown in these experiments, ACO is the algorithm that achieves a
better trade-off between the number of serviced users and the executed jobs rate per user.
Although that BE is the algorithm that achieves better jobs rate in most tests, small gains
were obtained with ACO when users join to the Cloud every 90 and 120 seconds. When
joining to the Cloud more users –70 and 80 users– every 90 seconds, the gains were
1.40% and 5.48%, respectively, and when joining to the Cloud 60, 70 and 80 users every
120 seconds, the gains were 1.54%, 1.34% and 0.86%, respectively.

5. Related work

The last decade has witnessed an astonishingly amount of research in improving SI tech-
niques, specially ACO [20]. As shown in recent surveys [24,21], these techniques have
been applied to distributed job scheduling. However, with regard to scheduling in Cloud
environments, very few works can be found to date [17], and moreover, to the best of our
knowledge, no effort aimed to job scheduling based on SI for dynamic scientific Clouds
where a large number of users are connected to submit their experiments.

In this related works, it is important to note that, on one hand, the SI techniques
are used to solve the job scheduling problem, i.e., solve how the jobs are assigned to
VMs, and do not to solve VM scheduling problem. On the other hand, the objectives
to optimize considered by the authors are suitable when the execution of a set of jobs
belong to the same user, but when a large number of users make requests to the Cloud
another metrics and goals such as those proposed in this work should be considered.

Concretely, the works in [1,25] propose ACO-based Cloud schedulers for minimiz-
ing makespan and maximizing load balancing, respectively. An interesting aspect of [1]
is that it was evaluated using real Cloud platforms (Google App Engine and Microsoft
Live Mesh), whereas the other work was evaluated through simulations. However, dur-
ing the experiments, [1] used only 25 jobs and a Cloud comprising 5 machines, while
in [25] despite to be simulated the authors have not provided all the information needed
to reproduce their experiments. Interestingly, like our proposal, these two efforts support
dynamic resource allocation, i.e., the scheduler does not need to know the details of the
jobs to allocate and the available resources.

Another relevant approach based on Particle Swarm Optimization (PSO) is proposed
in [19]. PSO is another SI technique that mimics the behavior of bird flocks, bee swarms
and fish schools. Contrary to [1,25] and our scheduler, the approach is based on static
resource allocation, which forces users to feed the scheduler with the estimated running
times of jobs on the set of Cloud resources to be used. Besides, [19] is targeted at paid
Clouds, i.e. those that charge users for CPU, storage and network usage. As a conse-
quence, the work only minimizes monetary cost, and does not consider other metrics.



Finally, the work in [12] address the problem of job scheduling in Clouds while
reducing energy consumption. Indeed, energy consumption has become a crucial prob-
lem [13], on one hand because it has started to limit further performance growth due to
expensive electricity bills, and on the other hand, by the environmental impact in terms
of carbon dioxide (CO2) emissions caused by high energy consumption. This in fact has
gave birth to a new field called Green Computing [13]. As such, [12] pays attention to
achieve competitive makespan as evidenced by experiments performed via CloudSim [4],
which is also used in this paper.

It is worth noting that all the surveyed works ignore multiple users, rendering diffi-
cult their applicability to execute PSEs in dynamic scientific Cloud environments.

6. Conclusions

PSEs is a type of simulation that involves running a large number of independent jobs
and typically requires a lot of computing power. These jobs must be efficiently processed
in the different computing resources of a parallel environment such as the ones offered
by a Cloud. Then, job scheduling in this context plays a fundamental role.

Recently, SI-inspired algorithms have received increasing attention in the research
community. SI refers to the collective behavior that emerges from a swarm of social in-
sects. Social insect colonies collectively solve complex problems by intelligent methods.
These problems are beyond the capabilities of each individual insect, and the cooperation
among them is self-organized without any supervision. Through studying social insect
colonies behaviors such as ant colonies, researchers have proposed algorithms for com-
binatorial optimization problems. Moreover, job scheduling in Clouds is also a combina-
torial optimization problem, and some SI-inspired schedulers have been proposed.

Existing efforts do not address dynamic online environments where multiple users
connect to scientific Clouds to execute their PSEs and to the best of our knowledge, no
effort aimed at maximizing the number of serviced users in a Cloud and maximizing the
number of executed jobs for each user that is joined. Executing a greater number of jobs
every time a user is connected means a more agile human processing of PSE job results.
Therefore, our new two-level Cloud scheduler pays special attention to this aspect and
the total number of user serviced. Simulated experiments performed with the help of the
well-established CloudSim toolkit and real PSE job data show that our scheduler can
balance better than their competitors the trade-off between the number of serviced users
and the job execution rate by user. Moreover, the ACO algorithm is the closest to Best
effort with respect to job rate and there are situations where higher gains are achieved
by ACO when there are a large number of users connected every 90 to 120 seconds. We
believe these are quite encouraging results.

Eventually, we will materialize the resulting schedulers on top of a real Cloud
platform, such as Emotive Cloud (http://www.emotivecloud.net/) or OpenNebula
(http://opennebula.org/), which are designed for extensibility. Lastly, we will con-
sider other Cloud scenarios, for example, with heterogeneous machines.

Another issue concerns energy consumption by the scheduler itself. Simpler sched-
ulers (e.g. Random or “Best effort”) require less CPU usage, memory accesses and net-
work transfers compared to more complex policies such as our scheduler. For exam-
ple, we need to maintain host load information for ants, which requires those resources.



Therefore, when running many jobs, the accumulated resource usage overhead may be
arguably significant, resulting in higher demands for energy.

Finally, we are extending this work by incorporating a mechanism that, every certain
time intervals, retries the creation of all or some of the VMs that failed when the user
requested them. Preliminary results show that, compared to the results reported in this
paper, our ACO-based scheduler is still the most competitive regarding jobs rate and at
the same time improvements the number of serviced users.
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