
In: Computer Middleware: Architecture, Advantages and Applications
Editor: Unknown

ISBN
c© 2010 Nova Science Publishers, Inc.

Chapter X

A Semi-automatic, MalleableMobilityModel
for Rapid Prototyping ofMobile Agent

Applications

Alejandro Zunino, Cristian Mateos and Marcelo Campo
ISISTAN Research Institute,

Universidad Nacional del Centro de la Provincia de Buenos Aires,
Tandil (B7001BBO), Buenos Aires, Argentina.

Also Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET).

Abstract

Mobile agents have been successfully used for building massively dis-
tributed systems. In spite of the advantages the paradigm has shown,
mobile agents are still somewhat underrated and hard to develop. Con-
sequently, we proposed the Reactive Mobility by Failure (RMF) mobility
model [1] for simplifying mobile agent adoption and development. RMF
enables the developer to non-intrusively delegate certaindecisions about
agent mobility to the underlying executing middleware. However, in its
current shape, the model is not able to consider application-specific con-
text, which may be helpful for making better decisions aboutmobility
regarding execution performance and network usage. In thispaper, we
describe an extension of RMF aimed at improving the efficiency of RMF-
based applications by allowing the programmer to tailor RMFaccording

2 Alejandro Zunino, Cristian Mateos Marcelo Campo

to his application requirements. In essence, the contribution of this pa-
per is to show that it is possible to automate some mobility decisions via
RMF, while keeping high levels of flexibility –the points of amobile agent
code at which the developer is allowed to use mobility– and performance
through the addition of custom mobility decisions. We have developed a
Prolog-based prototype of our extended RMF model to enable the rapid
implementation of mobile applications. Experimental results showing the
advantages of the approach with respect to related approaches are also
reported.

1. Introduction

A mobile agent is a computer program able to migrate from siteto site within a
network to carry out one or more tasks on behalf of a user [2]. On each site, a
mobile agent interacts with stationary service agents and other resources to ac-
complish its tasks. Conceptually, mobility enables agentsto move to the specific
site where a resource (e.g. a data source) is located, thus reducing remote inter-
actions and therefore execution time and network latency, or to visit a suitable
site to perform a CPU-intensive computation, thus improving throughput. Mo-
bile agents have shown advantages in terms of flexibility, scalability and mainly
reduced network bandwidth with respect to traditional non-mobile software [3].
For example, a user using a Personal Digital Assistant or a cell phone with an
expensive and slow Internet connection could send a mobile agent to perform
some processing on a connected server. The user can then disconnect from the
Internet while the mobile agent is at the server, thus savingmoney, battery and
time. After a while, the user could reconnect to receive the agent.

Mobile agents have been successfully employed in a diversity of areas such
as network management [4, 5], distributed information retrieval [6, 7, 8], mo-
bile computing [9, 10] and Grid computing [11, 12, 13], just to name a few.
Unfortunately, despite these positive experiences, the benefits of mobile agent
technology are often eclipsed by its inherent “difficult development” character-
istic [14, 15, 16]. Indeed, current approaches force application programmers to
manually bundle API directives for controlling mobility aspects such as when
and where to move an agent directly into its code [17], which naturally mixes
up with the code implementing the pure agent behavior. This has some evi-
dent disadvantages from a software engineering perspective in the sense that

A Semi-automatic, Malleable Mobility Model for Mobile Agents 3

good values for important software quality attributes suchas modifiability and
testability are more hard to obtain. Though mobile agents have interesting fea-
tures for building distributed systems, this fact makes mobility-based software
development more difficult than its non-mobile alternative [17], which in turn
has hindered the widespread adoption of mobile agents for distributed com-
puting. In this line, addressing the problem of simplifyingthe development
of mobile applications has gained much attention, as mobility seems to have
finally found its long-awaited “killer application” in the development of appli-
cations in large-scale contemporary distributed environments, namely Grids and
Clouds [18, 19].

Apart from the clear disadvantages of having the code in charge of per-
forming mobility scattered in the code implementing an agent’s behavior, most
approaches for developing mobile applications rely on proactive mobility, a pro-
grammatic, explicit form of mobility that is not suitable for these new environ-
ments. Essentially, these massively distributed settingsare highly dynamic in
the sense that hosts usually enter and leave the network often, causing proactive
mobility models, which are commonly based on static itineraries, not applica-
ble. A typical problem in this respect is how to effectively deal with itinerary
update when hosts may randomly leave or enter the network, and accept or deny
mobile agents at will, while keeping programming complexity low.

Reactive Mobility by Failure (RMF) has been proposed as an approach to
facilitate mobile agent development [1]. RMF aims at makingmobility almost
invisible by supporting it at the middleware level. RMF intervenes with the
normal execution of a mobile agent in specific points of its code to detectm-
failures. An m-failure is an attempt for accessing a resource (data, libraries,
services, etc.) that is unavailable at the local executing site. RMF is respon-
sible for moving the mobile agent causing them-failure to a machine with the
required resource and then resuming the agent execution, while dealing with re-
source as well as host volatility. In the end, mobility is more transparent to the
application programmer and the agent code is simpler, shorter and cleaner [1].

RMF has been implemented in MoviLog [20], a programming language
based on an integration of Prolog and Java. Experimental results suggest that
MoviLog reduces the code necessary to implement mobile applications com-
pared with proactive mobility [1], the mechanism which mostmobile agent
tools are based on. When employing proactive mobility, programmers embed

4 Alejandro Zunino, Cristian Mateos Marcelo Campo

migration directives into the agent code. In these experiences, mobile agent size
and network traffic were reduced by using RMF. However, in some situations,
MoviLog moves an agent more times than necessary causing excessive execu-
tion overheads and network traffic. The cause of this problem is that mobility is
always selected as the target mechanism for handling failures, however resource
fetching1 may be better suited depending on the characteristics of theapplica-
tion at hand, such as the order in which a set of needed resources are accessed by
the agent or the number of accesses. For instance, let us suppose that the agent
needs to query a database located at some siteS. Depending on the number of
accesses to the database it could be more convenient to transfer the agent toS
instead of querying the database remotely.

The problem is that by hiding most mobility details from the programmer,
MoviLog is not able to consider application-specific context that may be helpful
for making better decisions about mobility, this is, when toexploit it and when
not. In the above example, this context is given by the numberof accesses to the
database, which is information that, unless explicitly indicated by the program-
mer, is not available to MoviLog. Precisely, this paper describes an extension of
RMF aimed at improving its performance by allowing the programmer to adapt
RMF. The idea of the extension is that programmers should be able to specify
policiesconveying application-specific contextual information for adapting the
mechanisms that RMF uses for automating mobility. Roughly,policies specify
rules for deciding when and where to move an agent based on both this infor-
mation and current execution conditions.

While most approaches for handling mobility embed migration directives
into behavioral code, policies are separated from agent code. As a result, the
code implementing an agent’s functionality does not get mixed with its mobility-
related code. This practice, which can be viewed as a form of separation of
concerns, makes mobile agent code easier to develop, maintain and under-
stand [21, 17]. In opposition to RMF and thus to MoviLog, where the pro-
grammer has little flexibility to control how agent mobilityis managed, the
main contribution of this paper is to show that it is feasibleto automate many
mobility decisions at the middleware level while sacrificing as little flexibility

1Instead of moving an agent to the host where a required resource is hosted, the resource is
moved or copied to the agent’s location. Java Applets and ActiveX controls are two examples of
technologies based on this paradigm.

A Semi-automatic, Malleable Mobility Model for Mobile Agents 5

and performance –in terms of execution speed and network traffic– as possible.
The rest of the paper is organized as follows. The next section introduces the

concept of RMF. Section 3. describes the extensions made to RMF to support
policies. Section 4. reports experimental results that were carried out to validate
our approach. Section 5. discusses the most relevant related works. Finally,
Section 6. presents concluding remarks.

2. MoviLog and Reactive Mobility by Failure

Mobile agents in MoviLog can use two classical forms of mobility [22, 18]:
proactive (or subjective migration) and reactive (or forced migration). Proactive
mobility means that migration is initiated from inside the agent’s code by invok-
ing amove sentence. Reactive mobility is triggered by an entity external to the
agent. In both cases,strongmigration supports mobility. Bystrongwe mean
the ability of a mobile agent run-time system to allow migration of both the
code and the execution state of a mobile agent. In opposition, weakmigration
cannot transfer the execution state of a mobile agent. Therefore, it “forgets” the
point at where it was executing before migrating. Despite the clear drawbacks
of the second type of migration, it is widely supported by most mobile agent
platforms because it is easier to implement than strong migration. On the other
hand, though strong migration is hard to implement, it is much simpler to use
for programming mobile agents than weak migration [23, 18].The rest of the
paper will focus on reactive mobility. Details on proactivemobility in MoviLog
are described in [24].

RMF is a novel form of reactive mobility which is based on the assump-
tion that mobility is orthogonal to the rest of the abilitiesagents may have [25],
namely reasoning, reactivity, learning, interaction, andso forth. RMF exploits
the conceptual independence among agent abilities at the implementation level
by separating agent functionality in two classes: stationary and mobile func-
tionality. Stationary functionality is concerned with those actions executed by
agents at each site of a network. Mobile functionality is mainly concerned with
deciding about when and where to move. RMF exploits this separation by al-
lowing the programmer to focus his efforts on the stationary functionality. Tra-
ditional distributed technologies like RPC and Java RMI simplify application
development by hiding the location of components in a network, so that they

6 Alejandro Zunino, Cristian Mateos Marcelo Campo

may interact as if they were located at the same machine. Similarly, RMF hides
details and complexities about agent mobility [1], which aims at making mobil-
ity easy to use.

Before going into further details we will first define severalimportant con-
cepts. The run-time platform residing at each host that provides support for
executing agents is called aMARlet (Mobile Agent Resource servlet). A set
of MARlets such as all of them know one another conforms alogical net-
work. A logical network groups MARlets belonging to the same application or
closely related applications. In addition, MARlets can provide resources such
as databases, procedures or Web Services to agents.

A mobile agent in MoviLog consists of a sequence of Prolog clauses (code
and data) and a possibly empty sequence ofprotocols, which are also Prolog
predicates. Protocols represent resources potentially needed by the agent along
its lifetime. For example, the behavior of an agent looking for a phrase within a
file would be that of applying a string matching algorithm over the file contents.
Here, a protocol is required to indicate that the algorithm needs an external re-
source (the file) to accomplish its task. Indirectly, protocols define the points of
an agent’s code that may trigger mobility. The idea is that only some particu-
lar parts of a mobile agent may produce anm-failure, this is, those predicates
implementing the agent’s functionality described as protocols, whereas the rest
of the code has non-mobile behavior. In this way, the developer controls which
parts of the agent may cause it to move and which ones not. In our example,
each point of the code accessing the file may potentially trigger mobility.

RMF is based on the concept ofm-failure. An m-failure is an attempt for
accessing a resource (code, data, services, etc.) that is unavailable at the current
agent’s location. Anm-failure can only be caused by a code predicate described
as a protocol. When an agent causes anm-failure the MARlet at the current
location moves the agent to a host with the required resource. Once the agent
has migrated to the destination, its execution is resumed. As a result, mobility is
transparent to the agent. Them in m-failures is to distinguish traditional Prolog
failures, where no mobility is involved, from failures thatmay cause an agent to
move.

It is worth emphasizing that an agent does not decide neitherthe time to
migrate nor its destination. Migration is triggered bym-failures, and then the
destination is dynamically selected by the local MARlet by communicating with

A Semi-automatic, Malleable Mobility Model for Mobile Agents 7

its peers in the logical network. As a result, even when the agent knows nothing
about mobility, RMF can decide when and where to migrate the agent. Indeed,
the only information an agent is required to specify about mobility are the code
predicates whose failures are to be treated asm-failures.

Syntactically, a protocol is a declaration with the syntaxprotocol(functor,
arity) that instructs the RMF run-time to treat the failure of goalswith the form
functor(arg[1], ... , arg[arity]) asm-failures. Protocols are used for two reasons:

• from an agent point of view: to let the programmer control thepoints of
an agent’s code that may trigger reactive mobility.

• from a MARlet point of view: to describe clauses, or more generically
the interface for accessing resources, available in a logical network. RMF
activates when anm-failure occurs by searching the logical network for
the MARlets providing clauses with the same protocol as the goal that
m-failed. Protocols enable MARlets to describe the clauses or resources
they provide.

A simple example will clarify the ideas introduced so far. Wewill first show
a traditional Prolog program. Then, we will define a protocolto show how
the program becomes a mobile agent using RMF. Let us considerthe following
Prolog code:

1 preferred(_, sata, _, RPM, _, _):- RPM >= 7200.

2 ...

3 searchForOffers (CurrentList , FinalList):-

4 hd(Id, Type, Brand , RPM, Capacity , Price),

5 not(member(disk(Id), CurrentList)),

6 preferred(Id, Type, Brand , RPM, Capacity , Price),

7 searchForOffers ([disk(Id)|CurrentList], FinalList).

8 searchForOffers (CurrentList , CurrentList).

9 ?- CurrentList =[], searchForOffers (CurrentList , FinalList).

, which queries the Prolog database for clauseshd/6 (this is, functorhd and
six arguments) representing hard disks and satisfying someusers’ preferences,
these latter represented bypreferred/6 (lines 1-2). The result of the program is a
list FinalList containing facts of the formdisk(Id), whereId is the serial number
of the hard disk. The predicatepreferred(Id, ..., Price) evaluates totrue if the
hard disk identified byId matches a number of preferences over its type, brand,
speed, capacity and/or price. Particularly, in our example, the user is interested

8 Alejandro Zunino, Cristian Mateos Marcelo Campo

Table 1. Three MARlets and their clauses
M1 M2 M3

hd(#123,sata,wd,7200,300,50)

hd(#23,sata,maxtor,7200,80,30)

hd(#78,scsi,hp,10000,146,150)

hd(#80,scsi,ibm,15000,73.4,100)

hd(#33,sata,samsung,7200,320,55)

hd(#45,sata,ibm,5200,160,40)

hd(#22,scsi,seagate,15000,300,250)

hd(#44,sata,panasonic,7200,120,50)

in retrieving serial ATA disks whose speed is greater or equal than 7200 RPM
(line 1). The?- predicate (line 9) represents the input and output of the pro-
gram, given by a temporal empty list (CurrentList) and another unbounded list
(FinalList) where the search results will be placed.

Basically, the rule of line 3 is in charge of recursively finding and adding
hard disks to the temporal result list (line 7) by firstly avoiding duplicates (line 5)
and checking that the users’ preferences are fulfilled (line6). Once there are no
more items, this rule finally evaluates tofalse, thus the rule of line 8 is evaluated
by Prolog so as to make?- evaluate to true, which simply copies the contents
of the temporal list to the final result list. To further explain the execution of
the program we will now consider a Prolog database containing three clauses
(column M1 of Table 12). If we execute the program with those clauses we
obtain a list [disk(#123), disk(#23)], stating that the hard disks #123 and #23
match the users’ preferences.

The next code implements a modified version of the above program which
uses RMF for searching the three MARletsM1, M2 and M3 for hard disks.
The code is divided into two sections: PROTOCOLS and CLAUSES. The first
section contains protocol declarations. The second section contains the code
and data of the agent. Basically, the idea behind this code isto trigger mobility
uponm-failures of predicateshd/6 and hence forcing the program to visit the
three MARlets. The modified code is:

PROTOCOLS

protocol(hd, 6).

CLAUSES

preferred(_, sata, _, RPM, _, _):- RPM >= 7200.

...

?- CurrentList =[], searchForOffers (CurrentList , FinalList).

2Prices are hypothetical

A Semi-automatic, Malleable Mobility Model for Mobile Agents 9

As in the previous example, we are searching for hard disks satisfying some
preferences. The code behaves the same as the first example upto the point
when the program evaluateshd for the fourth time. In this case, the evalua-
tion of hd will fail, but considering thathd has been declared as a protocol,
an m-failure will occur. As a consequence, the RMF run-time willsearch for
MARlets providing clauseshd/6 to migrate the agent and to try to reevaluate
the goal there. As shown in table 1, there are two options, either M2 or M3.
Let us assume that RMF selectsM2. Then, after the migration of the agent
to M2, the program continues searching hard disks until no more options are
available. At this point anm-failure will occur and RMF will selectM3. After
finding hard disks atM3, hd will fail again. In this case there will be no more
options left for migrating the agent. Then, it will be returned to its origin (M1)
by the MARletM3. Finally, the result of the execution of the program will be
[disk(#123), disk(#23), disk(#33), disk(#44)]. Note thatafter a successful eval-
uation of a predicate thatm-failed an agent does not return automatically to its
origin. It returns if it finishes its execution, fails (no more alternatives are avail-
able for RMF) or the programmer manually invokes thereturn primitive, which
is provided by MoviLog.

To better understand the example we will show how RMF acts at each step
of the execution of the input query. The predicate?- is similar to executing:

hd(Id=#123, Type=sata, Brand=wd, RPM=7200, GB=300, Price=50),

not(member(disk(#123), [])),

preferred(Id=#123, Type=sata, Brand=wd, RPM=7200, GB=300, Price=50),

hd(Id=#23, Type=sata, Brand=maxtor, RPM=7200, GB=80, Price=30),

not(member(disk(#23), [disk(#123)])),

preferred(Id=#23, Type=sata, Brand=maxtor, RPM=7200, GB=80, Price=30),

% An m-failure is triggered

hd(Id=#78, Type=scsi, Brand=hp, RPM=10000, GB=146, Price=150),

not(member(disk(#78), [disk(#23), disk(#123)])),

preferred(Id=#78, Type=scsi, Brand=hp, RPM=10000, GB=146, Price=150),

% Agent is migrated to M2

hd(Id=#80, Type=scsi, Brand=ibm, RPM=15000, GB=73.4, Price=100),

not(member(disk(#80), [disk(#23), disk(#123)])),

preferred(Id=#80, Type=scsi, Brand=ibm, RPM=15000, GB=73.4, Price=100),

...

The execution of the first six lines of the code will successfully evaluate the
clauseshd(#23, sata, ...) andhd(#123, sata, ...), respectively. The third line
will evaluatehd(#78, scsi, ...), but it will fail because preferred will befalse (the

10 Alejandro Zunino, Cristian Mateos Marcelo Campo

disk is not serial ATA). At this point, MoviLog will try to findanother clause
hd, but no more clauses are available at the MARletM1. As a consequence, the
third evaluation ofhd/6 will m-fail because it is declared as a protocol. At this
point, RMF will move the agent toM2 and its execution will be resumed. As
shown in the example, protocols enable the programmer to delegate mobility
decisions on RMF regarding access to resources. Although not illustrated in
the example, MoviLog also supports dynamism with respect tothe contents of
MARlets during mobile agent execution. For instance, if a new clausehd/6 is
incorporated toM1 while the agent is migrating toM2, the platform detects this
situation and updates the execution state of the agent upon its arrival toM2 so a
new alternative for reevaluatinghd is taken into account in the future. A similar
consistency mechanism is applied to handle deleted clauses, but the algorithm
implementing it is rather more complex. See [1] for more details on both of
these consistency mechanisms.

In the example, the agent visits all the MARlets containing hard disks. It
is worth noting that this behavior is not forced by MoviLog, but by search-
ForOffers, because it evaluates all the predicateshd to make the query true.
In other words, when an individualm-failure occurs, RMF moves the agent to
one MARlet only, leaving remaining options asbacktrackingpoints. Because
searchForOffers tries to find all the hard disks, it causes threem-failures, one
at each executing MARlet.

So far we have described anm-failure caused by a simple lookup task. This
is the simplestm-failure a program can cause. In general, anm-failure may be
caused by any fragment of Prolog code with arbitrary complexity that evaluates
to false (fails). This, in turn, may be caused by the absence of a clause, as shown
in the example, or other situations such as a calculation whose result is within
certain range, a predicate whose execution produces an empty list of facts, an
invocation to a Web Service that returns no results [20], etc.

In cases where RMF is not enough to capture and express the mobile be-
havior of a mobile agent, it is possible to combine RMF with traditional proac-
tive mobility. To this end, MoviLog provides amoveTo(Site) primitive, which
causes an agent to migrate to the host represented bySite. Indeed, there are
situations where the programmer may know exactly when and where to move
an agent, which may yield automatic mobility counterproductive. However, in
highly dynamic environments with hosts that enter and leavethe network of-

A Semi-automatic, Malleable Mobility Model for Mobile Agents 11

ten, proactive mobility is difficult to use and manage. Consider, for example,
a mobile agent that has to visit a sequence of hosts and execute some code on
each of them. A typical solution using proactive mobility would involve defin-
ing the sequence of hosts in some variable of the agent. Then,a simple iteration
over the list of hosts would solve the problem. Now, if the hosts are allowed
to randomly leave or enter the network, and accept or deny mobile agents, the
problem becomes harder because the solution would require some code for up-
dating the itinerary. This is the type of situations where RMF simplifies mobile
agent development. Besides, in applications that use mobility for avoiding re-
mote interactions, RMF has also shown significant advantages [1].

Finally, RMF and proactive mobility do not interfere with each other. For
example, let us suppose that a mobile agent produces anm-failure while evalu-
ating a predicatehd/6 at M1. As a consequence, the agent is moved to siteM2

(with alternativesM2, M3). Then, let us additionally assume that the mobile
agent executes an explicitmoveTo(M3) when executing atM2. In casehd/6 is
reevaluated the agent will move again toM2. Indeed, RMF remembers the sites
visited by the agent for reevaluating the goal that caused anm-failure by keep-
ing a list of sites that may be visited to look for more clausesif the goal requires
further reevaluations.

Up to now we have described how RMF handles mobility automatically.
The next section explains the policy support for adapting RMF according to the
characteristics of mobile agents.

3. Resource access policies and mobility policies

Despite RMF has shown positive results [1], performance problems may arise
due to the lack of information RMF has about the application being executed.
For example, consider an agent that causes anm-failure, and then RMF migrates
the agent to a remote MARlet. Once there, the agent just accesses a clause such
ashd available locally and then returns to its origin. The problem here is that the
two migrations of the agent are more expensive in bandwidth and time than the
cost of copying the clause needed to solve the failure from the remote MARlet
to the current agent’s location.

Something similar occurs when, after anm-failure, a clause is available at
several MARlets. Then, RMF has to decide where to migrate theexecuting

12 Alejandro Zunino, Cristian Mateos Marcelo Campo

agent. If blindly decided, the agent may end running on a heavily loaded MAR-
let, traveling through several slow network links, or even worst, executing on a
site that charges for CPU usage. Up to now, these situations were avoided by
the programmer by combining RMF with proactive mobility, this is, by using
moveTo(Site) to instruct the agent to migrate toSite. However, by doing so one
of the main benefits of RMF, namely the separation between agent functionality
and mobility, is lost.

From now on, the paper will present a method for adapting RMF to different
application requirements while maintaining the separation of agent functionality
and mobility. The basic idea is to allow the agent developer to specifypolicies,
which govern choices in the behavior of RMF. In other words, policies are rules
provided by the programmer to adapt RMF to his requirements.

The contribution of this mechanism is to show that it is possible to auto-
mate mobility decisions. Unlike the original RMF where mobility is fuly auto-
matic [1], this work aims at providing flexibility on how mobility decisions are
made. As we will show, the main consequences of the approach are:

• Separation of concerns: agent functionality does not get mixed with code
for handling mobility. This makes agent code easier to develop, maintain
and understand. In addition, it is possible to dynamically change mobility
strategies. For an in-depth discussion and evaluation of the benefits of
separation of concerns in multi-agent systems see [21].

• Performance: mobility has advantages with respect to performance in
those cases where remote interactions are frequent or expensive. How-
ever, mobility has been hard to use. The approach presented in this paper
makes mobility easier to use and exploit compared to traditional proactive
mobility. We do not claim that by using RMF in conjunction with policies
we obtain better performance, but that by using these supports it is easier
to build mobile agents that take benefit from mobility. In principle, per-
formance comes from the fact that most of the code for handling mobility
is provided by the run-time when using RMF and policies. In opposition,
the code for handling mobility is embedded into the agent code under
proactive mobility. As a result, RMF-enabled mobile agentshave to carry
less code, use less network bandwidth and move faster.

Despite the rest of the paper will describe policies in the context of MoviLog,

A Semi-automatic, Malleable Mobility Model for Mobile Agents 13

these ideas are applicable to other programming languages with support for
strong mobility. For example, we have made some interestingprogress towards
supporting RMF and policies in the Java language [26]. However, this paper
focuses on explaining and evaluating the policy mechanism based on MoviLog
and hence the Prolog programming language, because MoviLogrepresent at
present the most stable prototype implementation of our ideas.

From now on, we will distinguish between two types of policies:

• resource access policies: in the previous example,m-failures always cause
the migration of the executing agent. However,m-failures can be treated
either by moving to other MARlets of the network or by copyingclauses
from other MARlets to the local one, depending on several factors such
as network traffic, resource usage, etc. Resource access policies are rules
for deciding whether to migrate an agent or fetch a resource located at a
remote MARlet.

• mobility policies: when more than one MARlet offer the protocol of the
goal thatm-failed, it may be necessary to visit some or all of them for
reevaluating the goal. In addition, the order for visiting these MARlets
may be important. For example, it may be convenient to visit the sites ac-
cording to their speed, CPU load or availability. Mobility policies define
the destination for an agent when more than one destination is available
after anm-failure.

The next sections describe the two types of policies in detail.

3.1. Resource access policies

Resource access policies (RAP) are used for deciding whether to migrate an
agent or fetch required resources from remote MARlets. For example, a simple
RAP is to migrate an agent if the network traffic produced by migrating the
agent is less than the estimated traffic for fetching some Prolog clauses. An
RAP is a rule with four parts,protocol, condition, actionT andactionF, where
protocol is a pair name/arity for associating the RAP with a protocol,condition
is user-defined code, andactionTandactionF may take the following values:

• move: migrates the agent to a MARlet offering the required resource.

14 Alejandro Zunino, Cristian Mateos Marcelo Campo

• fetch: transfers one instance of the required resource from a remote MAR-
let.

• fetchAll: fetches all instances of the required resource from a remote
MARlet.

When anm-failure occurs, the condition of the RAP associated with the protocol
of the goal thatm-failed is evaluated.ActionT is executed ifconditionholds,
otherwiseActionF is executed.

In the example described in Section 2. we could use a resourceaccess policy
to decide whether to migrate the agent or fetch all the clauses hd/6 from a re-
mote MARlet instead (recall that in Prolog capitalized arguments are variables
whereas the rest are constants):

1 PROTOCOLS

2 protocol(hd, 6).

3 accessPolicy (hd,

4 6,

5 (agentSize(T1), estTrFAll(hd, 6, M, T2), T1 < T2),

6 move,

7 fetchAll).

8 CLAUSES

9 preferred(_, scsi, _, _, _, _).

10 ...

11 ?- CurrentList =[], searchForOffers (CurrentList , FinalList).

accessPolicy (lines 3-7) states that in case of anm-failure the agent migrates
(line 6) if the network traffic T1 required for migrating the agentA, denoted
agentSize(T1), is less than the estimated network traffic T2 required for fetch-
ing all the clauseshd/6 from MARlet M, denotedestTrFAll(hd, 6, M, T2). This
condition is encapsulated in line 5. Otherwise, all the clauseshd/6 are fetched
from M (line 7). Note thatM is instantiated by RMF with the next site to visit.

The condition of the previous example uses two simple built-in rules pro-
vided by MoviLog for estimating network traffic: agentSize andestTrFAll. The
first one just returns the agent size measured in bytes. The second one queriesM
for the size of one of its clauseshd/6 and how many of them are available, and
then multiplies both numbers. Note that the resulting valueis just an estimation,
which may be accurate or not depending on the data. In addition, the program-
mer is free to specify any estimation mechanism by using custom Prolog pred-
icates. To this end, MoviLog offers an extensible binding that allows users to

A Semi-automatic, Malleable Mobility Model for Mobile Agents 15

implement library-like functions in other languages (currently Java) and wrap
such functions as Prolog predicates, thus they are accessible to mobile agents.

Let us consider a variation of the previous example where a small subset of
the sites are connected to the rest of the network by using wireless links. These
links are unreliable and thus force mobile agents to performseveral retries to
fetch data, where the overhead is inversely proportional tothe link quality. A
policy may be used for evaluating:

• the cost of migrating through the wireless links by taking into account the
agent size plus the extra traffic involved in retrying the agent transfer.

• the cost of fetching the list of hard disks from the destination plus the
extra traffic involved in retrying due to errors.

Then, the code implementing this variant of the applicationwould be:

PROTOCOLS

protocol(hd, 6).

accessPolicy (hd, 6,

(wifi(M) ->

(agentSize(T1), linkQuality (M, Q), T1E is T1*(2-Q),

estTrFAll(hd, 6, M, T2), T2E is T2*(2-Q)

T1E < T2E)

) ;

(agentSize(T3),

estTrFAll(hd, 6, M, T4),

T3 < T4)),

move, fetchAll) .

CLAUSES

preferred(_, scsi, _, _, _, _).

...

?- CurrentList =[], searchForOffers (CurrentList , FinalList).

Here, the most interesting part of the previous example is the definition of the
RAP. It first determines whether the network link to the next destination MAR-
let M is wireless. In that case, the RAP estimates the traffic caused by migrating
the agent and fetching the clauses fromM plus the overhead of retransmitting.
Otherwise, it just uses the same policy as the previous example.

The previous example shows just a glimpse of the flexibility of RAPs. Note
that in the example, the predicatewifi(M) and lnkQlty(M,Q) are defined by the
language, but nothing prevents the programmer to use predicates that depend on

16 Alejandro Zunino, Cristian Mateos Marcelo Campo

the internal or external state of the agent. In addition, theevaluation of a policy
may also do something besides performing simple calculations. For example,
alter the agent behavior, invoke a Web Service, or anything that can be written
in Prolog.

3.2. Mobility policies

When anm-failure occurs, there may be several alternatives for solving it. For
example, a resource may be offered by two or more MARlets. In this sense,
a mobility policy (MP) selects the next destination for moving an agent or the
next source for fetching resources based on some user definedmetric such as
remote CPU load or network link speed.

In addition, an MP can build an itinerary for an agent if necessary. For
example, let us suppose an agent thatm-fails when evaluating a goala(X). There
are two MARletsM1 andM2 offering resourcesa/1. The agent moves toM1, but
after several tries when reevaluatinga(X) the agent fails again. Intuitively, an
alternative would be to try atM2, butM2 may not offer resourcesa/1 anymore or
a new MARletM3 with plenty of RAM and CPU power may join the network.
MPs not only select the next destination for moving agents, but also maintain
an up-to-date itinerary for them.

As in the case of RAP policies, the basis of this mechanism consists on
associating an MP to each protocol. The policy is used for selecting the next
destination for reevaluating a goal given a set of MARlets offering the same
protocol for the goal. For example, in a CPU bound application, it may be
useful to visit MARlets according to the CPU load at each site. Other types of
applications may use a policy based on the network load. For the example of
the previous subsection, we could now specify a policy for visiting MARlets
according to the speed of the network link between the current MARlet and the
destination as follows:

PROTOCOLS

protocol(hd, 6).

mobilityPolicy (hd, 6, shortestMoveTimePolicy).

...

At the implementation level, this policy uses IP ICMP echo requests to deter-
mine the network delay between hosts. Examples of other policies are:

A Semi-automatic, Malleable Mobility Model for Mobile Agents 17

• cpuLoadPolicy: obtains the CPU load of the MARlets offering the speci-
fied protocol and then sorts them in ascending order. The resulting itinerary
is updated if the goal is further reevaluated.

• freeMemoryPolicy: obtains the available memory for executing agents
of the MARlets offering the specified protocol and then sorts them in
descending order. The resulting itinerary is updated if thegoal is further
reevaluated.

• randomOrderPolicy: random ordering.

In all cases, MARlets that leave or join the network are takeninto account [1].
For efficiency reasons, MARlets communicate among them by using a multi-
cast peer to peer protocol specially designed for RMF. It is out of the scope
of this paper to discuss the internals of this protocol. For further details on it,
please refer to [27].

Up to now, in the examples shown, itineraries are built by RMFdynamically.
However, there are situations where the set of hosts is predetermined. The next
example shows the code of an agent that finds documents containing the string
“some string”. Each site of the network may contain several documents. This is
represented by a predicatedocuments(Docs) (line 14), whereDocs is the list
of documents available at the current executing site.

The code indirectly assigns a static itinerary for evaluatingdocuments(Docs)
by attaching a mobility policy (line 3) to the protocoldocument/1 (line 2).
Clearly, the declared protocol causes the predicatedocuments(Docs) to be sub-
ject to the control of RMF, while the attached policy determines the itinerary for
evaluating the predicate. The code[M1, M2, [M3->M4;M5]] (line 3) represents
the itinerary “go toM1, M2 andM3 in sequence. IfM3 is unavailable, go toM5;
otherwise go toM4”. Basically, each item of the itinerary is consumed every
time the predicatedocuments(Docs) is reevaluated.

1 PROTOCOLS

2 protocol(document, 1).

3 mobilityPolicy(document, 1, _, [M1, M2, [M3->M4; M5]]).

4 CLAUSES

5 % findDocuments(Docs, _, String, MatchingDocs)

6 % MatchingDocs is a subset of the documents in Docs

7 % that contains String

8 findDocuments([], MatchingDocs , _, MatchingDocs):-!.

9 findDocuments([Doc,Docs], MatchingAux , String, MatchingDocs):-

18 Alejandro Zunino, Cristian Mateos Marcelo Campo

10 documentContains(Doc, String),

11 findDocuments(Docs, [Doc|MatchingAux], String, MatchingDocs).

12 % Finds all the documents containing some string

13 findDocuments(_) :-

14 document(Docs),

15 findDocuments(Docs, [], some string, MatchingDocs),

16 currentSite(S),

17 assert(matching(S, MatchingDocs)), fail.

18 findDocument(L) :-

19 collectDocuments([], L), !.

20 % Collects the facts matching(site, [doc1, doc2, ...]) into a list

21 collectDocuments(Aux, MatchingDocs) :-

22 matching(S, Docs), !,

23 collectDocuments([[S,Docs]|Aux], Docs).

24 collectDocuments(MatchingDocs , MatchingDocs).

25 ?- findDocuments(FinalList).

The most interesting part of the above code is the clausefindDocuments. It
first evaluatesdocument(Docs) to obtain the list of documents hosted at the
current site. Then, the code iterates through the list of documents to find those
that contain “some string”. When this algorithm finishes, the code adds to the
agent’s state a factmatching with the name of the current site and the list of
documents found that passed the contents filter. Afterwards, the code forces
the reevaluation ofdocuments(Docs) because of thefail predicate at the end of
line 17. The idea is that by reevaluating that predicate, RMFwill migrate the
agent to the next site of the attached itinerary.

The syntax of a mobility policy ismobilityPolicy(functor, arguments, or-
dering, itinerary). The first two parts (functor andarguments) determine the
affected protocol,ordering represents a mechanism for sorting the hosts of
the itinerary (“_” is a do nothing sorting strategy) anditinerary specifies a
static itinerary for the given protocol. Note that by specifying an itinerary the
programmer overrides the default behavior of RMF for dynamically building
itineraries. In addition, a static itinerary may be prefixedby “+” for instructing
RMF to update the itinerary when sites join or leave the network. In this case
ordering is taken into account for updating the itinerary with new sites.

It is worth noting that both protocols and policies can be manipulated at
run-time by the agent. Indeed, protocols can be modified, RAPs and MPs can
be added or removed as any other Prolog fact. The only limitation is that they
cannot be removed while they are in use to solve anm-failure. All in all, by
extending RMF with policies we increased its flexibility while maintaining its
advantages regarding ease of programming. In addition, theseparation of agent

A Semi-automatic, Malleable Mobility Model for Mobile Agents 19

behavior and mobility code is increased. This, in turn, has apositive effect on
maintainability, modifiability and testability of agent code, which are desirable
quality attributes for any kind of software. By using RMF andpolicies, mobile
agents are developed in a two-step way [21]: a stationary version of the agent
containing the pure functional code is first derived, which is then furnished with
the code in charge of performing mobility.

4. Experimental results

The next subsections reports some experimental results obtained with two ap-
plications: a distributed solver and a computer componentssearcher. The goal
of the experiments is to evaluate the benefits of the extendedRMF support and
policies.

4.1. A distributed solver

We developed a distributed mathematical expression solverby using proactive
mobility (PM), RMF, RMF+policies, and message passing without mobility
(traditional client/server or non-mobile) and compared the four approaches. In
this experiment, even for the variants not relying on mobility behavior, we used
MoviLog in order to avoid language differences. The application consists of
two types of agents:

• server: a server is a non-mobile agent that provides services for solving
binary arithmetic operations such as+, -, /, or *. Servers cannot handle
compound operations, but are only able to solve a single typeof arithmetic
operation. In addition, each server is statically assignedto a specific host
of the network.

• client: is an agent that knows nothing about solving simple arithmetic
operations, but it is able to split compound expressions into simpler oper-
ations by applying associativity rules. For example, the expression:

2 ∗ 2
3− 1

+ 10− 7

20 Alejandro Zunino, Cristian Mateos Marcelo Campo

Table 2. Mathematical expressions used in the tests

Test case Mathematical expression

1 (10− 7)+ 9∗2
3−1

2 ((3∗ 1)+ (3− 1))!

3 (
∑6

i=1 i +
∑4

i=1 i)3

4 35+ average(100,2,84,5,15,1,20,4,53)
4

5, 6 and 7 51 + 22 + 33 + 44 + 54 + 23 + 32 + 41 + 43 + 24

can be rewritten as a number of binary operations: (((2∗2/(3−1))+10)−7.
In this way, these binary operations can be individually solved by servers.

Since servers and clients may reside in different sites, and remote commu-
nications between agents are not allowed (except in the non-mobile solu-
tion, in which the client made requests to servers by employing remote
synchronous messaging provided by MoviLog), clients may migrate to
ask for the resolution of a binary operation. When two or moreservers
located at different sites are able to solve the same required operation,
clients try to balance the CPU load of the network hosts by migrating to
the least loaded site. In the variants not based on RMF, the capabilities
for solving operations of the servers were known in advance,whereas in
the RMF-based solutions this was of course determined by therun-time
in charge of handlingm-failures.

Seven different test cases were implemented by using the four different mobility
mechanisms, this is, PM, RMF, RMF+policies, and client/server or non-mobile.
The expressions employed in the tests are shown in Table 2. Then, the seven test
cases and their four implementations were run on a 100 Mbps LAN with four
PCs using Java 6.0 and Windows XP. Four server agents capableof solving
different binary operations were deployed on each computer. In addition, the
computers also ran a process that generated random CPU load to provide a more
realistic and challenging scenario.

The test cases consisted on a client agent that was ordered tosolve a math-
ematical expression by using 16 server agents distributed across the four com-

A Semi-automatic, Malleable Mobility Model for Mobile Agents 21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Test case

PM
RMF

RMF+policies
Non−mobile

Figure 1. Execution time

puters. The first five test cases varied in the complexity of the mathematical
expression. On the other hand, the test case 5 used a cache at each server
for storing partial calculations. Test cases 6 and 7 used thesame expression
as 5, but the solution with RMF+policies used two different RAPs heuristics for
fetching partial solutions from the cache or moving the agent. Furthermore, for
RMF+policies, in all the test cases we used an MP to migrate agentsto sites
with low CPU load. In the first five test cases RAPs were not used. Figures 1
and 2 show the average running time and network traffic for 10 executions of
each test case. The standard deviation of the results was less than 5%.

For each test casei ∈ 1,2,3,4,5,6,7 and each implementationj ∈ PM, RMF,
RMF+policies, Non-mobile, we calculated the improvement ratios with respect
to execution time and traffic as follows:

timeRatioi, j = 1−
timei, j

∑
j timei, j/4

tra f f icRatioi, j = 1−
tra f f ici, j

∑
j tra f f ici, j/4

For a given implementationj and test casei, timeRatioi, j (or tra f f icRatioi, j)
can take the following values:

22 Alejandro Zunino, Cristian Mateos Marcelo Campo

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7

N
e
tw

o
rk

 t
ra

ff
ic

 [
K

b
y
te

s
]

Test case

PM
RMF

RMF+policies
Non−mobile

Figure 2. Network traffic

• < 0 whentimei, j (or tra f f ici, j) is greater than the average time (or traffic)
for the test casei. This means that the performance in terms of time (or
traffic) of the implementationj is below average for the test casei. In this
case, the smaller the ratio, the worst the performance (or network usage).

• = 0 whentimei, j (or tra f f ici, j) is equals to the average time (or traffic)
for the test casei. This means that the performance in terms of time (or
traffic) of the implementationj is equals to the average for the test casei.

• > 0 whentimei, j (or tra f f ici, j) is less than the average time (or traffic)
for the test casei. This means that the performance in terms of time (or
traffic) of the implementationj is above average for the test casei. In this
case, the larger the ratio, the better the performance (or network usage).

Figures 3 and 4 show the execution time and traffic improvement ratios for the
seven test cases. As shown in the Figures, proactive mobility performed rather
poorly. This was mainly caused by the size of the agents, which impacted on the
data transferred upon each invocation to themoveTo mobility primitive. They
were 23% bigger than the agents built with RMF+policies. This difference in
size was caused by the code for handling mobility, which was negligible in the
implementation using RMF.

A Semi-automatic, Malleable Mobility Model for Mobile Agents 23

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

1 2 3 4 5 6 7

E
n
h
a
n
c
e
m

e
n
t
R

a
te

Test case

PM
RMF

RMF+policies
Non−mobile

Figure 3. Improvement ratio (execution time)

−1

−0.5

 0

 0.5

1 2 3 4 5 6 7

E
n
h
a
n
c
e
m

e
n
t
R

a
te

Test case

PM
RMF

RMF+policies
Non−mobile

Figure 4. Improvement ratio (network traffic)

24 Alejandro Zunino, Cristian Mateos Marcelo Campo

On the other hand, the performance of the non-mobile solution was in the
middle between RMF and proactive mobility. The non-mobile solution had se-
rious problems when computing expressions with several (and different) math-
ematical operators as clients and servers interacted oftenand were located at
different sites. In those cases, mobility used less network traffic because remote
interactions were minimized by migrating clients. RMF performed well in test
cases 1 to 4, but rather badly in cases 5 to 7 because RMF moved the agent more
times than necessary. Finally, RMF+policies outperformed the other solutions
in 6 cases, which shows the usefulness of the policy mechanism for improving
the efficiency of RMF-enabled mobile agents.

It is worth noting that the size of the agent implemented withRMF+policies
was 23% smaller than the one implemented with proactive mobility. This shows
that RMF+policies, at least for this experiment, required less code to imple-
ment the applications. Furthermore, less code implied thatmigration was faster
and less network bandwidth was used when moving RMF-based agents in most
cases. In addition, the solution using RMF+policies was 5% bigger than the
smaller solution (RMF) because of the extra code for the policies. Note that
in general policies are compact. As mentioned in past sections, for more com-
plex policies, MoviLog provides a Java binding and API for defining policies by
wrapping existing Java code. With these APIs it is possible to extend MoviLog
with shared user-defined policies. As a consequence, agent size can be further
reduced.

The importance of these results are twofold. On one hand, they show that by
using RMF, agents are smaller than proactive mobile agents because of the sim-
plification of the code for handling mobility. However, in some situations the
price for easier development is loss of efficiency. On the other hand, the results
suggest that agents using RMF+policies are faster and use network resources
more efficiently than traditional proactive mobile agents and RMF. All in all, by
extending RMF with policies we obtained better results thanwith RMF, proac-
tive mobility and no mobility.

4.2. A computer components searcher

We developed another application consisting of an agent fordistributed search
of computer parts. We deployed a MoviLog network comprisingthe above four
sites with data and clauses representing hardware supplies. Basically, each site

A Semi-automatic, Malleable Mobility Model for Mobile Agents 25

contained information about specific computer components (disk, motherboard,
memory, processor, monitor and keyboard). Furthermore, two variants of the
searcher agent were used as test cases:

• test case 1 (search with preferences): an agent was asked to search for
computer parts satisfying a number of constraints over its features. In this
problem, the agent had to migrate several times until all theparts required
to build a computer were found.

• test case 2 (search the cheapest computer): this was similarto the previous
case, but the goal here was to build an entire computer by finding the
cheapest computer parts. Hence, the agent had to check the price of each
part on all the sites before “buying” it.

For each test case, we implemented five solutions:

• Proactive mobility by using MoviLog.

• Proactive mobility by using Jinni [28], a Prolog-based language with ex-
tensions for mobility.

• RMF.

• RMF with a MP that ordered sites according to the latency of the network
links.

• RMF with the same MP as the previous solution and a RAP that decided
whether to migrate the agent or fetch a computer part according to the
estimated network traffic.

The implementations were run on the same network described in subsection 4.1..
Figures 7 and 8 show the average execution time and network traffic for 10 ex-
ecutions of each implementation of the application. Moreover, Figures 5 and 6
show the execution time and traffic improvement ratios for the two test cases.
The ratios were calculated as explained in the previous subsection.

Once again, reactive mobility performed much better than its proactive coun-
terpart. From Figures 7 and 5, we can see how the usage of MPs first, and the
combination of MPs and RAPs later, consistently improved the default behavior

26 Alejandro Zunino, Cristian Mateos Marcelo Campo

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

1 2

E
n
h
a
n
c
e
m

e
n
t
R

a
te

Test case

PM
RMF
Jinni

RMF+MP
RMF+MP+RAP

Figure 5. Improvement ratio (execution time)

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

1 2

E
n
h
a
n
c
e
m

e
n
t
R

a
te

Test case

PM
RMF
Jinni

RMF+MP
RMF+MP+RAP

Figure 6. Improvement ratio (network traffic)

A Semi-automatic, Malleable Mobility Model for Mobile Agents 27

 0

 20

 40

 60

 80

 100

 120

 140

1 2

E
x
e
c
u
ti
o
n
 t
im

e
 [
s
]

Test case

PM
RMF
Jinni

RMF+MP
RMF+MP+RAP

Figure 7. Execution time

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 2

N
e
tw

o
rk

 t
ra

ff
ic

 [
K

B
y
te

s
]

Test case

PM
RMF
Jinni

RMF+MP
RMF+MP+RAP

Figure 8. Network traffic

28 Alejandro Zunino, Cristian Mateos Marcelo Campo

of RMF. A similar situation occurred for the overall networktraffic generated
during agent execution, as shown in Figure 8.

Finally, the Jinni implementations of the two test cases used more network
resources than RMF and proactive mobility. In spite of this fact, we originally
decided to use Jinni as it is a programming language for mobile agents that is
very close to our goals, this is, simplifying the development of mobile agent-
based applications. On the other hand, like MoviLog, Jinni is based on Prolog,
which allowed us to perform a fair comparison between the applications in terms
of the necessary codes lines to implement the various benchmarks.

4.3. Analysis of the results

In the experiments, RMF+policies consistently yielded speed and traffic im-
provements. These results were a direct consequence of the reduction in code
size, because most of the code for managing mobility, exceptpolicies, is pro-
vided by the run-time. In opposition, the implementations with proactive mo-
bility (MoviLog and Jinni) included many lines of code for handling mobility.
Besides improving performance, policies allowed the programmer involved in
the experiment to separate agent functionality from mobility-related code. This
is by itself a strong advantage with respect to the discussedrelated approaches.

It is worth noting that the usage of policies does not directly imply that
performance is increased. The bigger the ratio:

size o f clauses section
size o f policies

, the better the performance with respect to existing approaches. Indeed, the
benefits in terms of speed and network usage come from the factthat agents are
smaller because some of the code for handling mobility is pushed down to the
run-time support. For situations where policies become complex and require
many lines of code, MoviLog provides two APIs (Prolog plus Java) for incorpo-
rating policies to the run-time platform. In this way, thesepolicies do not have
to be carried by the agent and therefore do not require extra network bandwidth.
In addition, “exported” policies can be reused across several applications.

Last but not least, MARlets avoid moving agent policies multiple times by
using a simple caching technique. This is possible because the agent code is
split in two parts and policies usually do not change. In Jinni, for example, this

A Semi-automatic, Malleable Mobility Model for Mobile Agents 29

is not possible, because the agent code usually changes during run-time. This,
in turn, is a result of the lack of separation between code anddata.

5. Related work

There are many tools for supporting mobile agent development, however, most
of them only provide rudimentary mechanisms for handling agent migration
based on proactive mobility or weak migration. As a consequence, program-
mers are responsible for dealing with mobility, this is, providing code for de-
termining when and where to migrate an agent in order to access to non-local
resources. Then, developing mobile code demands more programming effort.
On the other hand, the spectrum of tools not relying on any technique for separa-
tion of concerns force developers to mix application logic with mobility-related
instructions.

Some of the earliest efforts to provide high level programming models to fa-
cilitate the development of mobile applications are Concordia [29], Aglets [30]
and Ajanta [2]. Concordia was one of the first platforms to useitineraries. The
idea is to provide each agent with a list of sites to visit and atask to perform
at each site. In this way, Concordia uses a proactive but a simple approach for
managing mobility and reducing programming effort. However, Concordia uses
a weak migration mechanism. Consequently, the programmer has to adopt a
rather difficult event driven approach for programming mobility [23]. Asim-
ilar problem arises with Aglets as well as Ajanta. Moreover,Jinni 2004 [28]
is a tool for programming Prolog-based mobile agents. Jinni2004 has been
specially designed to support orthogonal language constructs, namely program
composition and code reuse mechanisms, Prolog-based inference mechanisms,
execution of multiple independent goals in both co-routining and multithreaded
execution mode, agent coordination and communication, andclient-server re-
mote calls. Developers can use Jinni 2004 to exploit proactive strong mobility
by embedding mobility primitives in their agents’ code. In contrast, MoviLog
is based on a strong mobility mechanism that is quite transparent and is offered
in the context of an easy-to-use programming model based on reactive mobility.

Aglets introduced the concept of mobility patterns, this is, recurring solu-
tions that appear multiple times in mobile systems. Aglets defines a number
of predefined patterns and provides implementations for them, such asmeeting

30 Alejandro Zunino, Cristian Mateos Marcelo Campo

(several agents are required to meet at a specific host of a network in order to
exchange messages), orslave (an agent carries a message from one agent to
another). Despite the benefits in terms of development effort these patterns pro-
vide, developers are still in charge of programmatically handling most mobility
decisions. Besides, the weak migration mechanism used by Aglets has the same
problems as that of Concordia. Ajanta takes the concept of itineraries a step
further by providing migration patterns, this is, abstractmigrations paths for
agents. Examples are loop, selection, split and join. Itineraries are composed of
a number of migration patterns. At each step of an itinerary an agent may move,
perform a task, create or destroy other agents. These constructs provide power-
ful tools for building mobile agent systems with complex itineraries. However,
these itineraries are defined at development time instead ofat run-time as RMF
does. Then, Ajanta has problems targeting highly dynamic networks such as the
Internet or Computational Grids.

Other approaches such as MAGE [31], MobiPADS [32] and Poema [33]
support dynamic reconfiguration for mobility-based distributed applications.
MAGE organize applications as a number of distributed components that in-
teract among them. Developers define, by employing an event-based script-
ing language, distribution strategies at the inter-component level that can be
changed at run-time. Then, the code for handling mobility ismostly separated
from the application logic. Furthermore, MobiPADS uses a reflective middle-
ware with meta-objects for reconfiguring object-oriented applications. MAGE
and MobiPADS require however many modifications in the application code.
For example, with MAGE, the programmer has to change the codein the points
where components interact. Both tools only support mobility based on weak mi-
gration. Indeed, these approaches do not aim at being easy touse but at offering
some separation between application code and location aware code. Moreover,
Poema [33] differs from these two works in its ability to specify mobility strate-
gies at a higher level of abstraction and to support their seamless modification
even during application execution. Strategies are specified separated from the
application code by using an ad-hoc policy specification language. Precisely,
RMF+policies differs from MAGE and MobiPADS in that, like Poema, it sup-
ports true separation of concerns between the functional code of agents and the
mobility-related code, and its support for strong migration. However, unlike Po-
ema, our work allows developers to both specify policies andimplement agent

A Semi-automatic, Malleable Mobility Model for Mobile Agents 31

behavior by using the same language, which provides uniformity.

Some Java-based platforms support strong migration by either extending
the Java Virtual Machine (JVM), or automatically transforming ordinary Java
source codes to their mobile counterpart. For example, NOMADS [34] uses a
special virtual machine called AromaVM, which is a from scratch implemen-
tation of the Java Virtual Machine capable of capturing and transferring thread
execution state. This idea is still around with programmingtools like Mobile
JikesRVM [35], which extends a JVM or their own called JikesRVM with mo-
bility functionality. However, these approaches are brittle since interoperability
at the JVM level is compromised. X-KLAIM [36] modify Java classes for cap-
turing and reestablishing the state of running threads by relying on source-to-
source translation. As an advantage, X-KLAIM does not require an extended
virtual machine. However, the modified code is very hard to read and debug,
which compromises code maintainability.

Moreover, there is a substantial body of works regarding Java platforms for
developing computing intensive parallel applications. Such efforts have born
as a consequence of the increasing availability of computational power such as
multi-core machines, clusters, Grid and Clouds. As an example, ProActive [37]
allows developers to construct applications by composing mobile entities called
active objects. Active objects serve method calls from other (remote) active or
regular objects, and viceversa. Active object creation, lookup and mobility are
programmatically performed via API function calls, which requires knowledge
on the ProActive API. Besides, the tool is based on weak mobility. Moreover,
JavaSymphony [38] and Babylon [39] are two Java platforms featuring semi-
automatic execution model that transparently deals with migration, parallelism
and load balancing of thread-based applications. Programmers can control such
features by means of API primitives in the application code for optimization
purposes. However, JavaSymphony and Babylon do not prescribe any mecha-
nism for separating the optimization code from the pure functional code of an
application. Finally, mobility for complex systems is not only circumscribed to
Java, as evidenced by other mobile agent platforms implemented in compiled
languages. A representative example is Mobile-C [40], which supports migra-
tion of both C and C++ codes. Unfortunately, Mobile-C is also based on weak
mobility, thus it is not able to transfer and restore the execution state of mobile
agents.

32 Alejandro Zunino, Cristian Mateos Marcelo Campo

All in all, the main advantage of our approach is its capability for auto-
matically handling mobility, including dynamic itineraries, while being more
efficient than traditional proactive mobile systems. In addition, RMF+policies
requires less overall code than related approaches. As a consequence, agents
are smaller, use less network bandwidth to migrate, and are easier to develop,
understand and maintain. Another important advantage of our approach is the
separation of agent behavior and mobility, which improves the quality of the re-
sulting agent code from a software engineering perspective. Finally, MoviLog
runs on existing versions of the JVM, thus ensuring JVM-level interoperability.

6. Conclusion

In this paper we have described an extension of RMF aimed at improving its
efficiency and flexibility by allowing the developer to adapt themechanisms
used by RMF for performing mobility decisions. Conceptually, our approach
shows that mobility can be supported by the middleware so that mobility can
be used as easily as any other technology for distributed systems such as RPC,
RMI or CORBA, without sacrificing the above aspects. The extension presented
in this paper has been implemented and compared with client/server, proactive
mobility and RMF. The experimental results are very encouraging since they
show important gains in performance and reduced network bandwidth.

By employing our extended approach, the performance of applications is
competitive compared to the one achieved with RMF or traditional forms of mo-
bility. Besides, mobile agent development is simplified andthe core agent func-
tionality is separated from code for handling mobility. However, despite the ob-
tained results, we are planning to use our new support to experiment with more
elaborated applications and other scenarios. A recent successful experience that
could be used as a starting point for more experimentation isChronos [41], a
mobile-based meeting scheduling system that is entirely developed in MoviLog.

Another issue with RMF is its requirement for efficient group communica-
tion services or multi-cast in order for a MARlet to keep track of the resources
other MARlets have. This is difficult to achieve as most approaches for multi-
cast either require special network routers or are specially designed for multi-
media content. In addition, most of them have problems handling more than
1000 hosts and multiple senders, which might restrict the applicability of our

A Semi-automatic, Malleable Mobility Model for Mobile Agents 33

platform. To efficiently support reactive mobility in large scale deployments we
have developed a novel group communication mechanism namedGMAC taking
into account the special requirements of RMF [27].

We are also exploring an extension of RMF for handling remoteinvocations,
in addition to mobility and fetching. In essence, the idea isthat given anm-
failure, RMF should be able to do whatever is necessary to effectively solve the
m-failure. In this context, there are three alternatives: 1)move the agent where
the resource is located, 2) move the resource where the agentis located or 3)
use some remote invocation mechanism for accessing the resource. Note that 2)
is only possible if the resource is transferable while 3) is possible if the resource
accepts remote calls, for example, a shared printer, a Web server or a database.
From this, we have already obtained some interesting results [20].

Despite the description of RMF and policies were tied to MoviLog, the
concepts can be applied to other programming languages as well. Indeed, we
have developed a prototype Java-based platform with support for RMF and poli-
cies [26]. The platform does not require an extended JVM. Basically, this ap-
proach has been historically followed by many mobile agentsplatforms as Java
does not allow by default to obtain the execution state of applications and their
threads, which is precisely mandatory to support strong migration. Our proto-
type platform relies on run-time techniques for bytecode modification (the bi-
nary code generated by the Java compiler) to replicate the JVM-level execution
state of threads as application-level stacks on the Java heap, which are accessed
upon migrating an agent. In this way, neither the JVM nor the source codes of
applications are affected.

Finally, we are investigating how to adapt MoviLog in order to make it
FIPA compliant, a well-established international association that delivers stan-
dard specifications that support the materialization of interoperable agent plat-
forms. We aim at allowing MoviLog agents to interact with FIPA enabled plat-
forms and multi-agent systems. As a starting point, we will base our study on
a recent FIPA-inspired proposal for interoperablemobileagent techniques and
platforms [42].

34 Alejandro Zunino, Cristian Mateos Marcelo Campo

Acknowledgments

We acknowledge the financial support provided by ANPCyT through grants
PAE-PICT 2007-02311 and PAE-PICT 2007-02312.

References

[1] Alejandro Zunino, Marcelo Campo, and Cristian Mateos. Reactive mo-
bility by failure: When fail means move.Information Systems Frontiers -
Special Issue on Mobile Computing and Communications, 7(2):141–154,
2005.

[2] A. Tripathi, N. Karnik, T. Ahmed, R. Singh, A. Prakash, V.Kakani,
M. Vora, and M. Pathak. Design of the Ajanta system for mobileagent
programming.Journal of Systems and Software, 62(2):123–140, 2002.

[3] Robert Gray, George Cybenko, David Kotz, and Daniela Rus. Mobile
agents: Motivations and state of the art. In Jeffrey Bradshaw, editor,Hand-
book of Agent Technology. AAAI Press/MIT Press, 2001.

[4] S. Manvi and M. Kakkasageri. Multicast routing in mobilead hoc net-
works by using a multiagent system.Information Sciences, 178(6):1611–
1628, 2008.

[5] Vijay Verma, Ramesh Joshi, Bin Xie, and Dharma Agrawal. Combating
the bloated state problem in mobile agents based network monitoring ap-
plications.Computer Networks, 52(17):3218–3228, 2008.

[6] Irene Sygkouna and Miltiades Anagnostou. Efficient information retrieval
using mobile agents. In4th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’05), pages 1241–1242, New
York, NY, USA, 2005. ACM Press.

[7] Subrata Kumar Das, Kurt Shuster, Curt Wu, and Igor Levit.Mobile agents
for distributed and heterogeneous information retrieval.Information Re-
trieval, 8(3):383–416, 2005.

A Semi-automatic, Malleable Mobility Model for Mobile Agents 35

[8] Tainchi Lu and Chinghao Hsu. Mobile agents for information retrieval in
hybrid simulation environment.Journal of Network and Computer Appli-
cations, 30(1):244–264, 2007.

[9] Luminita Vasiu and Qusay H. Mahmoud. Mobile agents in wireless de-
vices.Computer, 37(2):104–105, February 2004.

[10] Mustafa Adacal and Ayse B. Benner. Mobile Web Services:An
new agent-based framework.IEEE Internet Computing, 10(3):58–65,
May/June 2006.

[11] J. Nichols, H. Demirkan, and M. Goul. Autonomic workflowexecution in
the Grid. IEEE Transactions on Systems, Man and Cybernetics - Part C:
Applications& Reviews, 36(3):353–364, May 2006.

[12] Munehiro Fukuda, Koichi Kashiwagi, and Shinya Kobayashi. AgentTeam-
work: Coordinating Grid-Computing jobs with mobile agents. Applied
Intelligence - Special Issue on Agent-Based Grid Computing, 25(2):181–
198, 2006.

[13] Yuhong Feng, Wentong Cai, and Jiannong Cao. Dynamic partner identifi-
cation in mobile agent-based distributed job workflow execution. Journal
of Parallel and Distributed Computing, 67(11):1137–1154, 2007.

[14] David Kotz, Robert Gray, and Daniela Rus. Future directions for mobile
agent research.IEEE Distributed Systems Online, 3(8), August 2002.

[15] P. Fradet, V. Issarny, and S. Rouvrais. Analyzing non-functional proper-
ties of mobile agents. In3rd International Conference on Fundamental
Approaches to Software Engineering (FASE’00) - European Joint Con-
ferences on the Theory and Practice of Software (ETAPS 2000), Lecture
Notes in Computer Science, pages 319–333, London, UK, March2000.
Springer-Verlag.

[16] Antonio Carzaniga, Gian Pietro Picco, and Giovanni Vigna. Is code still
moving around? looking back at a decade of code mobility. In29th Inter-
national Conference on Software Engineering (ICSE COMPANION’07),
pages 9–20, Washington, DC, USA, 2007. IEEE Computer Society.

36 Alejandro Zunino, Cristian Mateos Marcelo Campo

[17] Cidiane Lobato, Alessandro Garcia, Alexander Romanovsky, and Carlos
de Lucena. An aspect-oriented software architecture for code mobility.
Software: Practice and Experience, 38(13):1365–1392, 2008.

[18] A. Milanés, N. Rodriguez, and B. Schulze. State of the art in heteroge-
neous strong migration of computations.Concurrency and Computation:
Practice and Experience, 20(13):1485–1508, 2008.

[19] Fred Douglis. Ideas ahead of their time.IEEE Internet Computing,
12(5):4–6, 2008.

[20] Cristian Mateos, Alejandro Zunino, and Marcelo Campo.Extending
MoviLog for supporting Web Services.Computer Languages, Systems
& Structures, 33(1):11–31, April 2007.

[21] Alessandro Garcia, Carlos de Lucena, and Donald Cowan.Agents in
object-oriented software engineering.Software: Practice and Experience,
34(5):489–521, 2004.

[22] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding
code mobility. IEEE Transactions on Software Engineering, 24(5):342–
361, May 1998.

[23] Alberto Silva, Artur Romao, Dwight Deugo, and Miguel Mira da Silva.
Towards a reference model for surveying mobile agent systems. Au-
tonomous Agents and Multi-Agent Systems, 4(3):187–231, September
2001.

[24] Alejandro Zunino, Marcelo Campo, and Cristian Mateos.MoviLog: A
platform for Prolog-based strong mobile agents on the WWW.Revista
Iberoamericana de Inteligencia Artificial, 4(21):83–92, 2003.

[25] Hyacinth Nwana. Software agents: An overview.Knowledge Engineering
Review, 11(3):205–244, September 1996.

[26] Cristian Mateos, Alejandro Zunino, and Marcelo Campo.JGRIM: An ap-
proach for easy gridification of applications.Future Generation Computer
Systems, 24(2):99–118, February 2008.

A Semi-automatic, Malleable Mobility Model for Mobile Agents 37

[27] Pablo Gotthelf, Alejandro Zunino, Cristian Mateos, and Marcelo Campo.
GMAC: An overlay multicast network for mobile agent platforms.Journal
of Parallel and Distributed Computing, 68(8):1081–1096, 2008.

[28] Paul Tarau. Agent oriented logic programming in Jinni 2004. InACM Sym-
posium on Applied Computing (SAC’ 05), pages 1427–1428, New York,
NY, USA, 2005. ACM Press.

[29] David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, Mike Young, and
Bill Peet. Concordia: An infrastructure for collaboratingmobile agents.
In 1st International Workshop on Mobile Agents (MA’97), pages 86–97,
1997.

[30] Danny Lange and Mitsuru Oshima. Mobile agents with Java: The Aglet
API. World Wide Web, 1(3):111–121, 1998.

[31] Earl Barr, Raju Pandey, and Michael Haungs. MAGE: A distributed pro-
gramming model. In21st International Conference on Distributed Com-
puting Systems (ICDCS ’01), page 303, Washington, DC, USA, 2001.
IEEE Computer Society.

[32] A. Chan and Siu-Nam Chuang. MobiPADS: a reflective middleware for
context-aware mobile computing.IEEE Transactions on Software Engi-
neering, 29(12):1072–1085, 2003.

[33] Rebecca Montanari, Emil Lupu, and Cesare Stefanelli. Policy-based dy-
namic reconfiguration of mobile-code applications.Computer, 37(7):73–
80, 2004.

[34] Niranjan Suri, Jeffrey Bradshaw, Maggie Breedy, Paul Groth, Gregory
Hill, Renia Jeffers, and Timothy Mitrovich. An overview of the NOMADS
mobile agent system. In6th ECOOP Workshop on Mobile Object Systems:
Operating System Support, Security and Programming Languages, June
2000.

[35] Raffaele Quitadamo, Giacomo Cabri, and Letizia Leonardi. Mobile
JikesRVM: A framework to support transparent Java thread migration.Sci-
ence of Computer Programming, 70(2-3):221–240, 2008.

38 Alejandro Zunino, Cristian Mateos Marcelo Campo

[36] Lorenzo Bettini and Rocco De Nicola. Mobile distributed programming in
X-Klaim. In Formal Methods for Mobile Computing, volume 3465, pages
29–68. Springer Berlin/ Heidelberg, 2005.

[37] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fabrice
Huet, Matthieu Morel, and Romain Quilici.Grid Computing: Software
Environments and Tools, chapter Programming, Composing, Deploying
on the Grid, pages 205–229. Springer, Berlin, Heidelberg, and New York,
January 2006.

[38] Alexandru Jugravu and Thomas Fahringer. JavaSymphony, a pro-
gramming model for the Grid.Future Generation Computer Systems,
21(1):239–246, 2005.

[39] Willem van Heiningen, Steve MacDonald, and Tim Brecht.Babylon:
Middleware for distributed, parallel, and mobile Java applications. Con-
currency and Computation: Practice and Experience, 20(10):1195–1224,
2008.

[40] Yu-Cheng Chou, David Ko, and Harry Cheng. An embeddablemobile
agent platform supporting runtime code mobility, interaction and coor-
dination of mobile agents and host systems.Information and Software
Technology, 52(2):185–196, 2010.

[41] Alejandro Zunino and Marcelo Campo. Chronos: A multi-agent system
for distributed automatic meeting scheduling.Expert Systems with Appli-
cations, 36(3):7011–7018, 2009.

[42] J. Cucurull, R. Martí, G. Navarro-Arribas, S. Robles, B. Overeinder, and
J. Borrell. Agent mobility architecture based on IEEE-FIPAstandards.
Computer Communications, 32(4):712–729, 2009.

