In: Computer Middleware: Architecture, Advantages and ligapions ISBN
Editor: Unknown © 2010 Nova Science Publishers, Inc.

Chapter X

A SEMI-AUTOMATIC, M ALLEABLE M OBILITY M ODEL
FOR RAPID PROTOTYPING OF M OBILE AGENT
APPLICATIONS

Algiandro Zunino, Cristian Mateos and Marcelo Campo
ISISTAN Research Institute,
Universidad Nacional del Centro de la Provincia de Buenasshi
Tandil (B7001BBO), Buenos Aires, Argentina.
Also Consejo Nacional de Investigaciones Cientificas y o@ésn
(CONICET).

Abstract

Mobile agents have been successfully used for building melgslis-
tributed systems. In spite of the advantages the paradignshewn,
mobile agents are still somewhat underrated and hard tdafev€on-
sequently, we proposed the Reactive Mobility by Failure Rhobility
model [1] for simplifying mobile agent adoption and devetegnt. RMF
enables the developer to non-intrusively delegate ced@gisions about
agent mobility to the underlying executing middleware. tdoer, in its
current shape, the model is not able to consider applicaatific con-
text, which may be helpful for making better decisions abmobility
regarding execution performance and network usage. Inptyper, we
describe an extension of RMF aimed at improving thieency of RMF-
based applications by allowing the programmer to tailor RAEording

2 Alejandro Zunino, Cristian Mateos Marcelo Campo

to his application requirements. In essence, the conidbuwf this pa-
per is to show that it is possible to automate some mobilitisiens via
RMF, while keeping high levels of flexibility —the points ofrzobile agent
code at which the developer is allowed to use mobility— antbpeance
through the addition of custom mobility decisions. We hageafioped a
Prolog-based prototype of our extended RMF model to enaleleapid
implementation of mobile applications. Experimental issshowing the
advantages of the approach with respect to related apprsak also
reported.

1. Introduction

A mobile agent is a computer program able to migrate fromtsitdte within a
network to carry out one or more tasks on behalf of a user [2].e@xh site, a
mobile agent interacts with stationary service agents émer eesources to ac-
complish its tasks. Conceptually, mobility enables agentsove to the specific
site where a resource (e.g. a data source) is located, ttlusing remote inter-
actions and therefore execution time and network latencig wisit a suitable
site to perform a CPU-intensive computation, thus imprgulroughput. Mo-
bile agents have shown advantages in terms of flexibiligladxlity and mainly
reduced network bandwidth with respect to traditional nowbile software [3].
For example, a user using a Personal Digital Assistant otl pleene with an
expensive and slow Internet connection could send a moféatao perform
some processing on a connected server. The user can thenrtist from the
Internet while the mobile agent is at the server, thus sawiongey, battery and
time. After a while, the user could reconnect to receive thena

Mobile agents have been successfully employed in a diyasiireas such
as network management [4, 5], distributed informationiee#d [6, 7, 8], mo-
bile computing [9, 10] and Grid computing [11, 12, 13], justrtame a few.
Unfortunately, despite these positive experiences, tinefiits of mobile agent
technology are often eclipsed by its inherentffidult development” character-
istic [14, 15, 16]. Indeed, current approaches force agfitio programmers to
manually bundle API directives for controlling mobility @ects such as when
and where to move an agent directly into its code [17], whiaturally mixes
up with the code implementing the pure agent behavior. Thg dome evi-
dent disadvantages from a software engineering perspeictithe sense that

A Semi-automatic, Malleable Mobility Model for Mobile Agen 3

good values for important software quality attributes sashmodifiability and
testability are more hard to obtain. Though mobile agent® lrateresting fea-
tures for building distributed systems, this fact makes ifitgbased software
development more fficult than its non-mobile alternative [17], which in turn
has hindered the widespread adoption of mobile agents $tritilited com-
puting. In this line, addressing the problem of simplifyitige development
of mobile applications has gained much attention, as nglikems to have
finally found its long-awaited “killer application” in theesrelopment of appli-
cations in large-scale contemporary distributed enviremts, namely Grids and
Clouds [18, 19].

Apart from the clear disadvantages of having the code ingehaf per-
forming mobility scattered in the code implementing an dgdyehavior, most
approaches for developing mobile applications rely ongiiea mobility, a pro-
grammatic, explicit form of mobility that is not suitablerfthese new environ-
ments. Essentially, these massively distributed settamgshighly dynamic in
the sense that hosts usually enter and leave the network oftasing proactive
mobility models, which are commonly based on static itines not applica-
ble. A typical problem in this respect is how tffectively deal with itinerary
update when hosts may randomly leave or enter the netwadlka@rept or deny
mobile agents at will, while keeping programming comphgkitw.

Reactive Mobility by Failure (RMF) has been proposed as qageh to
facilitate mobile agent development [1]. RMF aims at makimgpility almost
invisible by supporting it at the middleware level. RMF intenes with the
normal execution of a mobile agent in specific points of itdecto detecin-
failures An m-failure is an attempt for accessing a resource (data,ridza
services, etc.) that is unavailable at the local executitey RMF is respon-
sible for moving the mobile agent causing tindfailure to a machine with the
required resource and then resuming the agent executidle, ddaling with re-
source as well as host volatility. In the end, mobility is etransparent to the
application programmer and the agent code is simpler, shand cleaner [1].

RMF has been implemented in MoviLog [20], a programming lsaue
based on an integration of Prolog and Java. Experimentaltsesuggest that
MoviLog reduces the code necessary to implement mobileiGgijgins com-
pared with proactive mobility [1], the mechanism which masbbile agent
tools are based on. When employing proactive mobility, paogners embed

4 Alejandro Zunino, Cristian Mateos Marcelo Campo

migration directives into the agent code. In these expeegnmobile agent size
and network tréiic were reduced by using RMF. However, in some situations,
MoviLog moves an agent more times than necessary causirg&xe execu-
tion overheads and network ffig. The cause of this problem is that mobility is
always selected as the target mechanism for handling ésilinowever resource
fetching may be better suited depending on the characteristics adpkca-
tion at hand, such as the order in which a set of needed resare accessed by
the agent or the number of accesses. For instance, let ussipmat the agent
needs to query a database located at somessiizepending on the number of
accesses to the database it could be more convenient téetréms agent t&s
instead of querying the database remotely.

The problem is that by hiding most mobility details from thegrammer,
MovilLog is not able to consider application-specific comtéat may be helpful
for making better decisions about mobility, this is, whemxploit it and when
not. In the above example, this context is given by the nurabaccesses to the
database, which is information that, unless explicitlyicgated by the program-
mer, is not available to MoviLog. Precisely, this paper diéss an extension of
RMF aimed at improving its performance by allowing the pesgmer to adapt
RMF. The idea of the extension is that programmers shouldleeta specify
policiesconveying application-specific contextual informatiom &lapting the
mechanisms that RMF uses for automating mobility. Rougtdicies specify
rules for deciding when and where to move an agent based orttustinfor-
mation and current execution conditions.

While most approaches for handling mobility embed migratitirectives
into behavioral code, policies are separated from agerg.céd a result, the
code implementing an agent’s functionality does not geteahixith its mobility-
related code. This practice, which can be viewed as a fornepéaration of
concerns, makes mobile agent code easier to develop, nmasrta under-
stand [21, 17]. In opposition to RMF and thus to MoviLog, wdéhe pro-
grammer has little flexibility to control how agent mobilitg managed, the
main contribution of this paper is to show that it is feasitdeautomate many
mobility decisions at the middleware level while sacrifggias little flexibility

linstead of moving an agent to the host where a required resdsihosted, the resource is
moved or copied to the agent’s location. Java Applets and/éXtcontrols are two examples of
technologies based on this paradigm.

A Semi-automatic, Malleable Mobility Model for Mobile Agen 5

and performance —in terms of execution speed and netwdfictras possible.

The rest of the paper is organized as follows. The next setttooduces the
concept of RMF. Section 3. describes the extensions madéite t& support
policies. Section 4. reports experimental results thaewarried out to validate
our approach. Section 5. discusses the most relevant dealaieks. Finally,
Section 6. presents concluding remarks.

2. MoviLog and Reactive Mobility by Failure

Mobile agents in MoviLog can use two classical forms of mitpil22, 18]:
proactive (or subjective migration) and reactive (or forogigration). Proactive
mobility means that migration is initiated from inside thgeeat’s code by invok-
ing amove sentence. Reactive mobility is triggered by an entity édkto the
agent. In both casestrong migration supports mobility. Bgtrongwe mean
the ability of a mobile agent run-time system to allow migmatof both the
code and the execution state of a mobile agent. In oppositieakmigration
cannot transfer the execution state of a mobile agent. Tdrerdt “forgets” the
point at where it was executing before migrating. Despitediear drawbacks
of the second type of migration, it is widely supported by hrosbile agent
platforms because it is easier to implement than strongatigr. On the other
hand, though strong migration is hard to implement, it is msienpler to use
for programming mobile agents than weak migration [23, T8je rest of the
paper will focus on reactive mobility. Details on proactiwebility in MoviLog
are described in [24].

RMF is a novel form of reactive mobility which is based on ttssump-
tion that mobility is orthogonal to the rest of the abilit@gents may have [25],
namely reasoning, reactivity, learning, interaction, andorth. RMF exploits
the conceptual independence among agent abilities at thlerimentation level
by separating agent functionality in two classes: statiprand mobile func-
tionality. Stationary functionality is concerned with Heactions executed by
agents at each site of a network. Mobile functionality ismhaconcerned with
deciding about when and where to move. RMF exploits thisrsgipa by al-
lowing the programmer to focus higferts on the stationary functionality. Tra-
ditional distributed technologies like RPC and Java RMI@dify application
development by hiding the location of components in a neétwso that they

6 Alejandro Zunino, Cristian Mateos Marcelo Campo

may interact as if they were located at the same machinel&8iwRMF hides
details and complexities about agent mobility [1], whicingaiat making mobil-
ity easy to use.

Before going into further details we will first define sevaraportant con-
cepts. The run-time platform residing at each host thatigesvsupport for
executing agents is calledMARIet (Mobile Agent Resource servlet). A set
of MARIets such as all of them know one another conformegical net-
work. A logical network groups MARIets belonging to the same &ayion or
closely related applications. In addition, MARIets canyide resources such
as databases, procedures or Web Services to agents.

A mobile agent in MoviLog consists of a sequence of Prologs#s (code
and data) and a possibly empty sequencerofocols which are also Prolog
predicates. Protocols represent resources potentiatiggateby the agent along
its lifetime. For example, the behavior of an agent lookiogd phrase within a
file would be that of applying a string matching algorithm iotre file contents.
Here, a protocol is required to indicate that the algoritreeds an external re-
source (the file) to accomplish its task. Indirectly, praisaefine the points of
an agent's code that may trigger mobility. The idea is thdy some particu-
lar parts of a mobile agent may produceratailure, this is, those predicates
implementing the agent’s functionality described as prok® whereas the rest
of the code has non-mobile behavior. In this way, the dewslopntrols which
parts of the agent may cause it to move and which ones not. riexample,
each point of the code accessing the file may potentiallgérignobility.

RMF is based on the concept wkfailure. An m-failure is an attempt for
accessing a resource (code, data, services, etc.) thavailable at the current
agent's location. Am-failure can only be caused by a code predicate described
as a protocol. When an agent causesvafailure the MARIet at the current
location moves the agent to a host with the required resoudree the agent
has migrated to the destination, its execution is resumsd r&esult, mobility is
transparent to the agent. Thein m-failures is to distinguish traditional Prolog
failures, where no mobility is involved, from failures thraay cause an agent to
move.

It is worth emphasizing that an agent does not decide neiligeetime to
migrate nor its destination. Migration is triggered tnyfailures, and then the
destination is dynamically selected by the local MARIlet bynenunicating with

A Semi-automatic, Malleable Mobility Model for Mobile Agen 7

its peers in the logical network. As a result, even when tlestknows nothing
about mobility, RMF can decide when and where to migrate gt Indeed,
the only information an agent is required to specify aboubifitg are the code
predicates whose failures are to be treatethdailures.

Syntactically, a protocol is a declaration with the synpaatocol(functor,
arity) that instructs the RMF run-time to treat the failure of goaith the form
functor(arg[1], ... , arg[arity]) asm-failures. Protocols are used for two reasons:

e from an agent point of view: to let the programmer control ploints of
an agent’s code that may trigger reactive mobility.

o from a MARIet point of view: to describe clauses, or more giadly
the interface for accessing resources, available in adbgetwork. RMF
activates when am-failure occurs by searching the logical network for
the MARIets providing clauses with the same protocol as te that
m-failed. Protocols enable MARIets to describe the clausesspurces
they provide.

A simple example will clarify the ideas introduced so far. Wi first show
a traditional Prolog program. Then, we will define a prototmishow how
the program becomes a mobile agent using RMF. Let us corsiddollowing
Prolog code:

preferred(_, sata, _, RPM, _, _):- RPM >= 7200.

1
2 ...
3 searchForOffers (CurrentlList, FinalList):-

4 hd(Id, Type, Brand, RPM, Capacity, Price),

5 not (member (disk (Id), CurrentList)),

6 preferred(Id, Type, Brand, RPM, Capacity, Price),

7 searchForOffers ([disk (Id)|CurrentlList], FinalList).

8 searchForOffers (CurrentlList, CurrentList).

9 ?- CurrentlList=[], searchForOffers (CurrentlList, FinalList).

, which queries the Prolog database for claus#$ (this is, functorhd and

six arguments) representing hard disks and satisfying se®es’ preferences,
these latter represented preferred/6 (lines 1-2). The result of the program is a
list FinalList containing facts of the forrdisk(ld), whereld is the serial number

of the hard disk. The predicafeeferred(ld, ..., Price) evaluates tdarue if the
hard disk identified byd matches a number of preferences over its type, brand,
speed, capacity afmt price. Particularly, in our example, the user is intexdst

8 Alejandro Zunino, Cristian Mateos Marcelo Campo

Tablel. Three MARIlets and their clauses

hd(#123,sata,wd,7200,300,50) hd(#80,scsi,ibm,15000,73.4,100nd(#22,scsi,seagate,15000,300,250)
hd(#23,sata,maxtor,7200,80,30)d(#33,sata,samsung, 7200,320, R&}#44,sata,panasonic, 7200,120,50)
hd(#78,scsi,hp,10000,146,150)nd(#45,sata,ibm,5200,160,40)

in retrieving serial ATA disks whose speed is greater or ethan 7200 RPM
(line 1). The?- predicate (line 9) represents the input and output of the pro
gram, given by a temporal empty lisTrrentList) and another unbounded list
(FinalList) where the search results will be placed.

Basically, the rule of line 3 is in charge of recursively fingliand adding
hard disks to the temporal result list (line 7) by firstly aliog duplicates (line 5)
and checking that the users’ preferences are fulfilled @nednce there are no
more items, this rule finally evaluatesfadse, thus the rule of line 8 is evaluated
by Prolog so as to make- evaluate to true, which simply copies the contents
of the temporal list to the final result list. To further explahe execution of
the program we will now consider a Prolog database contgitiinee clauses
(column M of Table £). If we execute the program with those clauses we
obtain a list [disk(#123), disk(#23)], stating that the chaisks #123 and #23
match the users’ preferences.

The next code implements a modified version of the above anegvhich
uses RMF for searching the three MARId#s, M, and M3 for hard disks.
The code is divided into two sections: PROTOCOLS and CLAUSHf first
section contains protocol declarations. The second sectatains the code
and data of the agent. Basically, the idea behind this cottetiigger mobility
uponm-failures of predicatesd/6 and hence forcing the program to visit the
three MARlets. The modified code is:

PROTOCOLS
protocol Chd, 6).
CLAUSES
preferred(_, sata, _, RPM, _, _):- RPM >= 7200.

?- CurrentlList=[], searchForOffers (CurrentList, FinalList).

2Prices are hypothetical

A Semi-automatic, Malleable Mobility Model for Mobile Agen 9

As in the previous example, we are searching for hard diskisfigag some
preferences. The code behaves the same as the first examfuethe point
when the program evaluatésl for the fourth time. In this case, the evalua-
tion of hd will fail, but considering thathd has been declared as a protocol,
an mfailure will occur. As a consequence, the RMF run-time wé#larch for
MARIets providing clausefd/6 to migrate the agent and to try to reevaluate
the goal there. As shown in table 1, there are two optionkgeM, or Ms.
Let us assume that RMF seledi. Then, after the migration of the agent
to My, the program continues searching hard disks until no motierapare
available. At this point am-failure will occur and RMF will selecM3. After
finding hard disks aM3, hd will fail again. In this case there will be no more
options left for migrating the agent. Then, it will be retadhto its origin ;)
by the MARIletM3. Finally, the result of the execution of the program will be
[disk(#123), disk(#23), disk(#33), disk(#44)]. Note tladiter a successful eval-
uation of a predicate tha-failed an agent does not return automatically to its
origin. It returns if it finishes its execution, fails (no necalternatives are avail-
able for RMF) or the programmer manually invokes tegirn primitive, which
is provided by MoviLog.

To better understand the example we will show how RMF actaett step
of the execution of the input query. The predicatés similar to executing:

hd(Id=#123, Type=sata, Brand=wd, RPM=7200, GB=300, Price=50),

not (member (disk (#123), [1)),

preferred (Id=#123, Type=sata, Brand=wd, RPM=7200, GB=300, Price=50),
hd(Id=#23, Type=sata, Brand=maxtor, RPM=7200, GB=80, Price=30),

not (member (disk (#23), [disk(#123)1)),

preferred (Id=#23, Type=sata, Brand=maxtor, RPM=7200, GB=80, Price=30),

% An m-failure is triggered

hd(Id=#78, Type=scsi, Brand=hp, RPM=10000, GB=146, Price=150),

not (member (disk (#78), [disk(#23), disk(#123)1]1)),

preferred (Id=#78, Type=scsi, Brand=hp, RPM=10000, GB=146, Price=150),

% Agent is migrated to M2

hd(Id=#80, Type=scsi, Brand=ibm, RPM=15000, GB=73.4, Price=100),

not (member (disk (#80), [disk(#23), disk(#123)]1)),

preferred (Id=#80, Type=scsi, Brand=ibm, RPM=15000, GB=73.4, Price=100),

The execution of the first six lines of the code will succelbgfavaluate the
clauseshd(#23, sata, ...) andhd(#123, sata, ...), respectively. The third line
will evaluatehd(#78, scsi, ...), but it will fail because preferred will bialse (the

10 Alejandro Zunino, Cristian Mateos Marcelo Campo

disk is not serial ATA). At this point, MoviLog will try to findanother clause
hd, but no more clauses are available at the MARIgt As a consequence, the
third evaluation othd/6 will m-fail because it is declared as a protocol. At this
point, RMF will move the agent td1, and its execution will be resumed. As
shown in the example, protocols enable the programmer &gdtd mobility
decisions on RMF regarding access to resources. Althouglfilustrated in
the example, MoviLog also supports dynamism with respetiiéacontents of
MARIets during mobile agent execution. For instance, if & iméausehd/6 is
incorporated tdvi; while the agent is migrating thl,, the platform detects this
situation and updates the execution state of the agent tparrival toM, so a
new alternative for reevaluatirtgl is taken into account in the future. A similar
consistency mechanism is applied to handle deleted clabseghe algorithm
implementing it is rather more complex. See [1] for more ifet@n both of
these consistency mechanisms.

In the example, the agent visits all the MARIets containirgdndisks. It
is worth noting that this behavior is not forced by MoviLogjtlby search-
ForOffers, because it evaluates all the predicatesto make the query true.
In other words, when an individuat-failure occurs, RMF moves the agent to
one MARIet only, leaving remaining options backtrackingpoints. Because
searchForOffers tries to find all the hard disks, it causes thradailures, one
at each executing MARIet.

So far we have described amfailure caused by a simple lookup task. This
is the simplesim-failure a program can cause. In general nafailure may be
caused by any fragment of Prolog code with arbitrary coniplékat evaluates
tofalse (fails). This, in turn, may be caused by the absence of aeJassshown
in the example, or other situations such as a calculationse/iesult is within
certain range, a predicate whose execution produces ary distptf facts, an
invocation to a Web Service that returns no results [20], etc

In cases where RMF is not enough to capture and express thiserheb
havior of a mobile agent, it is possible to combine RMF witiditional proac-
tive mobility. To this end, MoviLog provides moveTo(Site) primitive, which
causes an agent to migrate to the host representeditby Indeed, there are
situations where the programmer may know exactly when aretevio move
an agent, which may yield automatic mobility counterprdiec However, in
highly dynamic environments with hosts that enter and l¢aeenetwork of-

A Semi-automatic, Malleable Mobility Model for Mobile Agen 11

ten, proactive mobility is diicult to use and manage. Consider, for example,
a mobile agent that has to visit a sequence of hosts and exseote code on
each of them. A typical solution using proactive mobility wia involve defin-
ing the sequence of hosts in some variable of the agent. Br@mple iteration
over the list of hosts would solve the problem. Now, if thethawre allowed
to randomly leave or enter the network, and accept or denyilenagents, the
problem becomes harder because the solution would requine sode for up-
dating the itinerary. This is the type of situations where R&implifies mobile
agent development. Besides, in applications that use ityofal avoiding re-
mote interactions, RMF has also shown significant advastfide

Finally, RMF and proactive mobility do not interfere withataother. For
example, let us suppose that a mobile agent producesfaiture while evalu-
ating a predicat&d/6 at M;. As a consequence, the agent is moved toldite
(with alternativesM,, M3). Then, let us additionally assume that the mobile
agent executes an explicitoveTo(M3) when executing aM,. In casehd/6 is
reevaluated the agent will move againMb. Indeed, RMF remembers the sites
visited by the agent for reevaluating the goal that causemt-ailure by keep-
ing a list of sites that may be visited to look for more clau§ése goal requires
further reevaluations.

Up to now we have described how RMF handles mobility autara#yi
The next section explains the policy support for adaptingFRidcording to the
characteristics of mobile agents.

3. Resource access policies and mobility policies

Despite RMF has shown positive results [1], performancélpros may arise
due to the lack of information RMF has about the applicatiemgy executed.
For example, consider an agent that causes-failure, and then RMF migrates
the agent to a remote MARIet. Once there, the agent just sesesclause such
ashd available locally and then returns to its origin. The probleere is that the
two migrations of the agent are more expensive in bandwidthtine than the
cost of copying the clause needed to solve the failure fraremote MARIlet
to the current agent’s location.

Something similar occurs when, after arfailure, a clause is available at
several MARlets. Then, RMF has to decide where to migrateeitezuting

12 Alejandro Zunino, Cristian Mateos Marcelo Campo

agent. If blindly decided, the agent may end running on aihelmaded MAR-
let, traveling through several slow network links, or evesrst, executing on a
site that charges for CPU usage. Up to now, these situati@ns awoided by
the programmer by combining RMF with proactive mobilityistlis, by using
moveTo(Site) to instruct the agent to migrate 8ite. However, by doing so one
of the main benefits of RMF, namely the separation betweentdigectionality
and mobility, is lost.

From now on, the paper will present a method for adapting Rdvtktterent
application requirements while maintaining the sepanadfcagent functionality
and mobility. The basic idea is to allow the agent developepecifypolicies
which govern choices in the behavior of RMF. In other wordsicies are rules
provided by the programmer to adapt RMF to his requirements.

The contribution of this mechanism is to show that it is poiesio auto-
mate mobility decisions. Unlike the original RMF where miibiis fuly auto-
matic [1], this work aims at providing flexibility on how mdity decisions are
made. As we will show, the main consequences of the appraach a

e Separation of concerns: agent functionality does not geednivith code
for handling mobility. This makes agent code easier to dgvahaintain
and understand. In addition, it is possible to dynamicdtigrge mobility
strategies. For an in-depth discussion and evaluationeob#nefits of
separation of concerns in multi-agent systems see [21].

e Performance: mobility has advantages with respect to pagbce in
those cases where remote interactions are frequent or sixperHow-
ever, mobility has been hard to use. The approach presenthisipaper
makes mobility easier to use and exploit compared to tatitiproactive
mobility. We do not claim that by using RMF in conjunction tvjtolicies
we obtain better performance, but that by using these stgjids easier
to build mobile agents that take benefit from mobility. Inngiple, per-
formance comes from the fact that most of the code for hagafinbility
is provided by the run-time when using RMF and policies. Ipagition,
the code for handling mobility is embedded into the agentecodder
proactive mobility. As a result, RMF-enabled mobile agérage to carry
less code, use less network bandwidth and move faster.

Despite the rest of the paper will describe policies in thetext of MoviLog,

A Semi-automatic, Malleable Mobility Model for Mobile Agen 13

these ideas are applicable to other programming languagassupport for
strong mobility. For example, we have made some interegtingress towards
supporting RMF and policies in the Java language [26]. Hanehis paper
focuses on explaining and evaluating the policy mechanigsed on MoviLog
and hence the Prolog programming language, because Moviargsent at
present the most stable prototype implementation of owside

From now on, we will distinguish between two types of policie

e resource access policies the previous examplep-failures always cause
the migration of the executing agent. Howewvetfailures can be treated
either by moving to other MARIets of the network or by copytiguses
from other MARIets to the local one, depending on severdbfacsuch
as network trffic, resource usage, etc. Resource access policies are rules
for deciding whether to migrate an agent or fetch a resourcatéd at a
remote MARlet.

e mobility policies when more than one MARIetfier the protocol of the
goal thatm-failed, it may be necessary to visit some or all of them for
reevaluating the goal. In addition, the order for visititpde MARIlets
may be important. For example, it may be convenient to isitdites ac-
cording to their speed, CPU load or availability. Mobilitglizies define
the destination for an agent when more than one destinatiamailable
after anm-failure.

The next sections describe the two types of policies in betai

3.1. Resource access policies

Resource access policies (RAP) are used for deciding whaihmigrate an
agent or fetch required resources from remote MARIets. kample, a simple
RAP is to migrate an agent if the network ffia produced by migrating the
agent is less than the estimatedfirafor fetching some Prolog clauses. An
RAP is a rule with four partsprotocol condition actionT andactionF, where
protocol is a pair namarity for associating the RAP with a protocobndition

is user-defined code, amtionT andactionF may take the following values:

e move migrates the agent to a MARIeffering the required resource.

14 Alejandro Zunino, Cristian Mateos Marcelo Campo

o fetch transfers one instance of the required resource from ateeMAR-
let.

o fetchAlt fetches all instances of the required resource from a remot
MARIlet.

When amm-failure occurs, the condition of the RAP associated withgrotocol
of the goal thaim-failed is evaluated.ActionT is executed ifcondition holds,
otherwiseActionFis executed.

In the example described in Section 2. we could use a resaaosss policy
to decide whether to migrate the agent or fetch all the ckabgés from a re-
mote MARIet instead (recall that in Prolog capitalized angmts are variables
whereas the rest are constants):

1 PROTOCOLS

2 protocol (hd, 6).

3 accessPolicy (hd,

4 6,

5 (agentSize(T1), estTrFAll(hd, 6, M, T2), Tl < T2),
6 move ,

7 fetchAll).

8 CLAUSES

9 preferred(_, scsi, _, _, _, _).

10 A

11 ?- CurrentList=[], searchForOffers (CurrentList, FinalList).

accessPolicy (lines 3-7) states that in case of anfailure the agent migrates
(line 6) if the network tréfic T1 required for migrating the agew, denoted
agentSize(T1), is less than the estimated networkffiiaT 2 required for fetch-
ing all the clausehd/6 from MARIlet M, denotedestTrFAIl(hd, 6, M, T2). This
condition is encapsulated in line 5. Otherwise, all the 4sid/6 are fetched
from M (line 7). Note thatM is instantiated by RMF with the next site to visit.
The condition of the previous example uses two simple lwitiles pro-
vided by MoviLog for estimating network tfiac: agentSize andestTrFAIl. The
first one just returns the agent size measured in bytes. Thad®ne queried
for the size of one of its clausésl/6 and how many of them are available, and
then multiplies both numbers. Note that the resulting vagyest an estimation,
which may be accurate or not depending on the data. In additie program-
mer is free to specify any estimation mechanism by usingoou$trolog pred-
icates. To this end, MoviLogfters an extensible binding that allows users to

A Semi-automatic, Malleable Mobility Model for Mobile Agen 15

implement library-like functions in other languages (emtty Java) and wrap
such functions as Prolog predicates, thus they are actessimobile agents.

Let us consider a variation of the previous example whereal subset of
the sites are connected to the rest of the network by usingegs links. These
links are unreliable and thus force mobile agents to perfeeneral retries to
fetch data, where the overhead is inversely proportion#thédink quality. A
policy may be used for evaluating:

¢ the cost of migrating through the wireless links by takingiaccount the
agent size plus the extra fii@ involved in retrying the agent transfer.

¢ the cost of fetching the list of hard disks from the destimatplus the
extra trdfic involved in retrying due to errors.

Then, the code implementing this variant of the applicatiauld be:

PROTOCOLS
protocol Chd, 6).
accessPolicy(hd, 6,
(wifiQM) ->
(agentSize(T1), linkQuality (M, Q), TI1E is T1*(2-Q),
estTrFAll (hd, 6, M, T2), T2E is T2*(2-Q)
T1E < T2E)
)
(agentSize(T3),
estTrFAll Chd, 6, M, T4),
T3 < T4)),
move, fetchAll) .
CLAUSES
preferred(_, scsi, _, _, _, _).

?- CurrentlList=[], searchForOffers (CurrentList, FinalList).

Here, the most interesting part of the previous exampledasitfinition of the
RAP. It first determines whether the network link to the nesgtthation MAR-
let M is wireless. In that case, the RAP estimates thi@&dreaused by migrating
the agent and fetching the clauses frimplus the overhead of retransmitting.
Otherwise, it just uses the same policy as the previous eleamp

The previous example shows just a glimpse of the flexibilftRAPs. Note
that in the example, the predicakéfi(M) andInkQIlty(M,Q) are defined by the
language, but nothing prevents the programmer to use ptedithat depend on

16 Alejandro Zunino, Cristian Mateos Marcelo Campo

the internal or external state of the agent. In addition etrauation of a policy
may also do something besides performing simple calculstid-or example,
alter the agent behavior, invoke a Web Service, or anythiatydan be written
in Prolog.

3.2. Mohbility policies

When anm-failure occurs, there may be several alternatives forisglit. For
example, a resource may b&ayed by two or more MARIets. In this sense,
a mobility policy (MP) selects the next destination for nrayian agent or the
next source for fetching resources based on some user defiegt such as
remote CPU load or network link speed.

In addition, an MP can build an itinerary for an agent if nseeg. For
example, let us suppose an agent thdails when evaluating a goalX). There
are two MARIletsM; andM, offering resourcea/1. The agent moves thl,, but
after several tries when reevaluatia(X) the agent fails again. Intuitively, an
alternative would be to try d¥,, butM, may not dfer resourcea/1 anymore or
a new MARIetM3 with plenty of RAM and CPU power may join the network.
MPs not only select the next destination for moving agenis,atso maintain
an up-to-date itinerary for them.

As in the case of RAP policies, the basis of this mechanisnsistmon
associating an MP to each protocol. The policy is used farcti@lg the next
destination for reevaluating a goal given a set of MARIdfering the same
protocol for the goal. For example, in a CPU bound applicgtib may be
useful to visit MARIets according to the CPU load at each. Séher types of
applications may use a policy based on the network load. Heoexample of
the previous subsection, we could now specify a policy feitivig MARlets
according to the speed of the network link between the cuMgRIet and the
destination as follows:

PROTOCOLS
protocol Chd, 6).
mobilityPolicy (hd, 6, shortestMoveTimePolicy).

At the implementation level, this policy uses IP ICMP echquests to deter-
mine the network delay between hosts. Examples of othecipslare:

A Semi-automatic, Malleable Mobility Model for Mobile Agen 17

e cpuLoadPolicy: obtains the CPU load of the MARIetsfering the speci-
fied protocol and then sorts them in ascending order. Thédtirgsitinerary
is updated if the goal is further reevaluated.

o freeMemoryPolicy: obtains the available memory for executing agents
of the MARIlets dfering the specified protocol and then sorts them in
descending order. The resulting itinerary is updated ifgbal is further
reevaluated.

e randomOrderPolicy: random ordering.

In all cases, MARIlets that leave or join the network are taikém account [1].
For dhciency reasons, MARIlets communicate among them by usingl&-mu
cast peer to peer protocol specially designed for RMF. Itusa the scope
of this paper to discuss the internals of this protocol. kwothier details on it,
please refer to [27].

Up to now, in the examples shown, itineraries are built by Riyiramically.
However, there are situations where the set of hosts is fedmed. The next
example shows the code of an agent that finds documents wmioigtéine string
“some string”. Each site of the network may contain seveoaldhents. This is
represented by a predicadecuments(Docs) (line 14), whereDocs is the list
of documents available at the current executing site.

The code indirectly assigns a static itinerary for evahgdiocuments(Docs)
by attaching a mobility policy (line 3) to the protocdbcument/1 (line 2).
Clearly, the declared protocol causes the predidat&ments(Docs) to be sub-
ject to the control of RMF, while the attached policy deteres the itinerary for
evaluating the predicate. The cofdd,, My, [M3->Mg4;Ms]] (line 3) represents
the itinerary “go toM1, M, andMg3 in sequence. IM3 is unavailable, go tdvs;
otherwise go tdVl,”. Basically, each item of the itinerary is consumed every
time the predicatéocuments(Docs) is reevaluated.

1 PROTOCOLS

2 protocol (document, 1).

3 mobilityPolicy(document, 1, _, [M1, M2, [M3->M4; M5]1]).

4 CLAUSES

5 % findDocuments(Docs, _, String, MatchingDocs)

6 % MatchingDocs is a subset of the documents in Docs

7 % that contains String

8 findDocuments([], MatchingDocs, _, MatchingDocs):-!.

9 findDocuments([Doc,Docs], MatchingAux, String, MatchingDocs):-

18 Alejandro Zunino, Cristian Mateos Marcelo Campo

10 documentContains(Doc, String),

11 findDocuments(Docs, [Doc|MatchingAux], String, MatchingDocs).
12 % Finds all the documents containing some string

13 findDocuments(_) :-

14 document (Docs),

15 findDocuments(Docs, [], some string, MatchingDocs),
16 currentSite(S),

17 assert (matching (S, MatchingDocs)), fail.

18 findDocument(L) :-

19 collectDocuments([], L), !.

20 % Collects the facts matching(site, [docl, doc2, ...]) into a list
21 collectDocuments(Aux, MatchingDocs) :-

22 matching (S, Docs), !,

23 collectDocuments([[S,Docs]]|Aux], Docs).

24 collectDocuments(MatchingDocs, MatchingDocs).

25 ?- findDocuments(FinalList).

The most interesting part of the above code is the cléing®ocuments. It
first evaluateslocument(Docs) to obtain the list of documents hosted at the
current site. Then, the code iterates through the list ofidmmts to find those
that contain “some string”. When this algorithm finisheg tlode adds to the
agent’s state a faghatching with the name of the current site and the list of
documents found that passed the contents filter. Afterwdhdscode forces
the reevaluation oflocuments(Docs) because of théail predicate at the end of
line 17. The idea is that by reevaluating that predicate, RilFmigrate the
agent to the next site of the attached itinerary.

The syntax of a mobility policy isnobilityPolicy(functor, arguments, or-
dering, itinerary). The first two partsf(nctor and arguments) determine the
affected protocol,ordering represents a mechanism for sorting the hosts of
the itinerary (“_" is a do nothing sorting strategy) aittherary specifies a
static itinerary for the given protocol. Note that by spegicify an itinerary the
programmer overrides the default behavior of RMF for dyreahy building
itineraries. In addition, a static itinerary may be prefixsd‘+" for instructing
RMF to update the itinerary when sites join or leave the nétwén this case
ordering is taken into account for updating the itinerary with nevesit

It is worth noting that both protocols and policies can be ipalated at
run-time by the agent. Indeed, protocols can be modified, k&l MPs can
be added or removed as any other Prolog fact. The only liiitas that they
cannot be removed while they are in use to solverefailure. All in all, by
extending RMF with policies we increased its flexibility Wwhimaintaining its
advantages regarding ease of programming. In additiorseparation of agent

A Semi-automatic, Malleable Mobility Model for Mobile Agen 19

behavior and mobility code is increased. This, in turn, hassitive dfect on
maintainability, modifiability and testability of agentdm®, which are desirable
quality attributes for any kind of software. By using RMF gmalicies, mobile
agents are developed in a two-step way [21]: a stationargiorof the agent
containing the pure functional code is first derived, whicthien furnished with
the code in charge of performing mobility.

4. Experimental results

The next subsections reports some experimental resulignebit with two ap-
plications: a distributed solver and a computer componssascher. The goal
of the experiments is to evaluate the benefits of the exteRdliéd support and
policies.

4.1. A distributed solver

We developed a distributed mathematical expression sblesing proactive
mobility (PM), RMF, RMF+policies, and message passing without mobility
(traditional clientserver or non-mobile) and compared the four approaches. In
this experiment, even for the variants not relying on mopbehavior, we used
MovilLog in order to avoid language fiierences. The application consists of
two types of agents:

e server a server is a non-mobile agent that provides services faingp
binary arithmetic operations such as-, /, or *. Servers cannot handle
compound operations, but are only able to solve a singledi/asthmetic
operation. In addition, each server is statically assignetspecific host
of the network.

e client is an agent that knows nothing about solving simple aritione
operations, but it is able to split compound expressiorssimpler oper-
ations by applying associativity rules. For example, theression:

2% 2
3-1

+10-7

20 Alejandro Zunino, Cristian Mateos Marcelo Campo

Table 2. Mathematical expressions used in thetests

Test case M athematical expression
1 (10-7)+ 22
2 ((B3x1)+ (83— 1))
3 L+ Xii)?
4 35+ averagélOQZ,Sj,S,lS,1,20,4,53)

56and7 5+22+33+44 454+ 28432141+ 434+ 24

can be rewritten as a number of binary operations:=g(23—1))+10)-7.
In this way, these binary operations can be individuallysdlby servers.

Since servers and clients may reside iffiedent sites, and remote commu-
nications between agents are not allowed (except in themaite solu-
tion, in which the client made requests to servers by emptpyemote
synchronous messaging provided by MoviLog), clients magrate to
ask for the resolution of a binary operation. When two or meeevers
located at dierent sites are able to solve the same required operation,
clients try to balance the CPU load of the network hosts byratiigg to
the least loaded site. In the variants not based on RMF, thabdiies
for solving operations of the servers were known in advantereas in
the RMF-based solutions this was of course determined byutiréime

in charge of handlingn-failures.

Seven dferent test cases were implemented by using the fdterdint mobility
mechanisms, this is, PM, RMF, RMipolicies, and cliefiserver or non-mobile.
The expressions employed in the tests are shown in Tablegh, Tie seven test
cases and their four implementations were run on a 100 Mbps Ww#h four
PCs using Java 6.0 and Windows XP. Four server agents capgabtaving
different binary operations were deployed on each computerdditien, the
computers also ran a process that generated random CPWIpea/tde a more
realistic and challenging scenario.

The test cases consisted on a client agent that was ordeseti/éna math-
ematical expression by using 16 server agents distributemba the four com-

A Semi-automatic, Malleable Mobility Model for Mobile Agen 21

55

T
M ——
50 _— RMF ---%--- |
= RMF+policies -
/ Non-mobile -
45 \
40 \
35

25

Execution time [s]
iz}

Test case

Figure 1. Execution time

puters. The first five test cases varied in the complexity efrttathematical
expression. On the other hand, the test case 5 used a cachehaserver
for storing partial calculations. Test cases 6 and 7 useddinge expression
as 5, but the solution with RM#policies used two dierent RAPs heuristics for
fetching partial solutions from the cache or moving the agearthermore, for
RMF+policies, in all the test cases we used an MP to migrate agersites
with low CPU load. In the first five test cases RAPs were not uségures 1
and 2 show the average running time and networKitréor 10 executions of
each test case. The standard deviation of the results wathkas 5%.

For each test case= 1,2,3,4,5,6,7 and each implementatijpa PM, RMF,
RMF+policies, Non-mobile, we calculated the improvement matidth respect
to execution time and tfac as follows:

timeRatig; = 1 time,,
i Q=1- ——F——
) . time j/4
traf ficRati 1 traf fici
i Qj=1l- ———
Qi > traf fici /4

For a given implementatiopand test casgtimeRatig; (ortraf ficRatiq ;)
can take the following values:

22 Alejandro Zunino, Cristian Mateos Marcelo Campo

200

PN ' PM ——
RMF ---%¢---
e RMF-+policies -+
// Non-mobile
160 / \

140
120 / \
100

Network traffic [Kbytes]

Test case

Figure 2. Network tréfic

e < Owhentime j (ortraf fic; ;) is greater than the average time (offig
for the test casé This means that the performance in terms of time (or
traffic) of the implementatior) is below average for the test casén this
case, the smaller the ratio, the worst the performance (arank usage).

e = 0 whentimg j (or traf fic; j) is equals to the average time (orffie)
for the test case This means that the performance in terms of time (or
traffic) of the implementatiorj is equals to the average for the test case

e > 0 whentimg; (or traf fic; ;) is less than the average time (orffi@)
for the test case This means that the performance in terms of time (or
traffic) of the implementation is above average for the test casi this
case, the larger the ratio, the better the performance (aonle usage).

Figures 3 and 4 show the execution time andhitamprovement ratios for the
seven test cases. As shown in the Figures, proactive nmyopéiformed rather
poorly. This was mainly caused by the size of the agents,mihipacted on the
data transferred upon each invocation to it@veTo mobility primitive. They
were 23% bigger than the agents built with RMgelicies. This diference in
size was caused by the code for handling mobility, which wegigible in the
implementation using RMF.

A Semi-automatic, Malleable Mobility Model for Mobile Agen

23

Enhancement Rate

Enhancement Rate

0.8

0.6

0.4

0.2

o

PM —3

RMF &=xxx3
RMF+policies &z
Non-mobile mmm—m

4
Test case

6 7

Figure 3. Improvement ratio (execution time)

0.5

o

|
I
o

RMF+policies &z
Non-mobile mmm—m

4
Test case

6 7

Figure 4. Improvement ratio (network ffi)

24 Alejandro Zunino, Cristian Mateos Marcelo Campo

On the other hand, the performance of the non-mobile soluwtias in the
middle between RMF and proactive mobility. The non-mobdtigon had se-
rious problems when computing expressions with severa ¢fterent) math-
ematical operators as clients and servers interacted aftdnwere located at
different sites. In those cases, mobility used less netwadificttzecause remote
interactions were minimized by migrating clients. RMF penfied well in test
cases 1to 4, but rather badly in cases 5 to 7 because RMF movadént more
times than necessary. Finally, RMpolicies outperformed the other solutions
in 6 cases, which shows the usefulness of the policy meahnaiaisimproving
the dficiency of RMF-enabled mobile agents.

It is worth noting that the size of the agent implemented \WilMF+policies
was 23% smaller than the one implemented with proactive kb his shows
that RMF+policies, at least for this experiment, required less cadaniple-
ment the applications. Furthermore, less code impliedrtiigtation was faster
and less network bandwidth was used when moving RMF-basattsag most
cases. In addition, the solution using RMpolicies was 5% bigger than the
smaller solution (RMF) because of the extra code for thecppsi Note that
in general policies are compact. As mentioned in past sestior more com-
plex policies, MoviLog provides a Java binding and API fofidiag policies by
wrapping existing Java code. With these APIs it is possiblextend MoviLog
with shared user-defined policies. As a consequence, agentan be further
reduced.

The importance of these results are twofold. On one hany sthew that by
using RMF, agents are smaller than proactive mobile agextause of the sim-
plification of the code for handling mobility. However, inree situations the
price for easier development is loss diigiency. On the other hand, the results
suggest that agents using RMpolicies are faster and use network resources
more dficiently than traditional proactive mobile agents and RMIFirdall, by
extending RMF with policies we obtained better results tith RMF, proac-
tive mobility and no mobility.

4.2. A computer components sear cher

We developed another application consisting of an agendiftributed search
of computer parts. We deployed a MoviLog network comprighngjabove four
sites with data and clauses representing hardware suppléescally, each site

A Semi-automatic, Malleable Mobility Model for Mobile Agen 25

contained information about specific computer componelisk (motherboard,
memory, processor, monitor and keyboard). Furthermore,vaviants of the
searcher agent were used as test cases:

test case 1 (search with preferences): an agent was askedrtth or
computer parts satisfying a number of constraints oveed#tufres. In this
problem, the agent had to migrate several times until alptrés required
to build a computer were found.

test case 2 (search the cheapest computer): this was sionites previous
case, but the goal here was to build an entire computer bynfintiie
cheapest computer parts. Hence, the agent had to checkicheopeach
part on all the sites before “buying” it.

For each test case, we implemented five solutions:

Proactive mobility by using MoviLog.

Proactive mobility by using Jinni [28], a Prolog-based laage with ex-
tensions for mobility.

RMF.

RMF with a MP that ordered sites according to the latency efbtwork
links.

RMF with the same MP as the previous solution and a RAP thatieéc
whether to migrate the agent or fetch a computer part acopridi the
estimated network tfac.

The implementations were run on the same network descritb&ebisection 4.1..
Figures 7 and 8 show the average execution time and netwasfic fior 10 ex-
ecutions of each implementation of the application. Moegpkigures 5 and 6
show the execution time and ffi@ improvement ratios for the two test cases.
The ratios were calculated as explained in the previousestibs.

Once again, reactive mobility performed much better thapribactive coun-
terpart. From Figures 7 and 5, we can see how the usage of MBsafid the
combination of MPs and RAPs later, consistently improveddéfault behavior

26 Alejandro Zunino, Cristian Mateos Marcelo Campo

0.8

RMF Exxx3
Jinni B
0.6 kL RMF+MP n—
RMF+MP+RAP £===3
° 0.4
g’ 0.2
SR 55
-0.2
-0.4 : :
1 2
Test case
Figure 5. Improvement ratio (execution time)
2
S
-1 L

Test case

Figure 6. Improvement ratio (network ffi)

27

A Semi-automatic, Malleable Mobility Model for Mobile Agen

m L ~
SORRKRKS dmowo«o«o« =
196%%
X KGRI IR ISR e
10000 0 0 OO0 OO 00O O OO O OO 00 %
RRRRLRLRZRIRRLRILRRLILRLRKRS o
5
(3
8 o
s& e
S
N~
(]
o —
I u I
=2
SwEoo LL SwEoo
TScES< TScS<
S+ S +0o
sd sd
T3 T3
w w
S S
iz -
o o o (=] o o o o o o o o o o (=] (=] o
< N o 0 © < N o o o o o o o o o
— — — o © ~ © w0 < (<) o -~
[s] awn uonnoex3 [seMhg] ouyes yiomieN

Test case

Figure 8. Network tréic

28 Alejandro Zunino, Cristian Mateos Marcelo Campo

of RMF. A similar situation occurred for the overall netwdrkffic generated
during agent execution, as shown in Figure 8.

Finally, the Jinni implementations of the two test caseslusere network
resources than RMF and proactive mobility. In spite of thist,fwe originally
decided to use Jinni as it is a programming language for magknts that is
very close to our goals, this is, simplifying the developtmehmobile agent-
based applications. On the other hand, like MoviLog, Jiaridased on Prolog,
which allowed us to perform a fair comparison between thdiegtjpns in terms
of the necessary codes lines to implement the various begriism

4.3. Analysisof theresults

In the experiments, RMFpolicies consistently yielded speed andfiaim-
provements. These results were a direct consequence cédhbetion in code
size, because most of the code for managing mobility, exgelities, is pro-
vided by the run-time. In opposition, the implementatiorithyproactive mo-
bility (MoviLog and Jinni) included many lines of code forrdling mobility.
Besides improving performance, policies allowed the pmogner involved in
the experiment to separate agent functionality from migbiklated code. This
is by itself a strong advantage with respect to the discussated approaches.

It is worth noting that the usage of policies does not diseatiply that
performance is increased. The bigger the ratio:

size of clauses section
size of policies

, the better the performance with respect to existing aghes Indeed, the
benefits in terms of speed and network usage come from théh&tcigents are
smaller because some of the code for handling mobility isiedsiown to the
run-time support. For situations where policies becomepermand require
many lines of code, MoviLog provides two APIs (Prolog pluga)dor incorpo-
rating policies to the run-time platform. In this way, thegs#icies do not have
to be carried by the agent and therefore do not require egtwaonk bandwidth.
In addition, “exported” policies can be reused across sdagplications.

Last but not least, MARIets avoid moving agent policies iplédttimes by
using a simple caching technique. This is possible becdwesagdent code is
split in two parts and policies usually do not change. InijJifur example, this

A Semi-automatic, Malleable Mobility Model for Mobile Agen 29

is not possible, because the agent code usually changegduri-time. This,
in turn, is a result of the lack of separation between codedaital

5. Rdated work

There are many tools for supporting mobile agent developniemvever, most
of them only provide rudimentary mechanisms for handlingragnigration
based on proactive mobility or weak migration. As a consegegprogram-
mers are responsible for dealing with mobility, this is,\yding code for de-
termining when and where to migrate an agent in order to adweson-local
resources. Then, developing mobile code demands moregonoging éfort.
On the other hand, the spectrum of tools not relying on artynigcie for separa-
tion of concerns force developers to mix application logithwnobility-related
instructions.

Some of the earliest#orts to provide high level programming models to fa-
cilitate the development of mobile applications are Codizof29], Aglets [30]
and Ajanta [2]. Concordia was one of the first platforms toitineraries. The
idea is to provide each agent with a list of sites to visit artdsk to perform
at each site. In this way, Concordia uses a proactive but plsiapproach for
managing mobility and reducing programminfoet. However, Concordia uses
a weak migration mechanism. Consequently, the programm@etdiadopt a
rather dificult event driven approach for programming mobility [23]. sin-
ilar problem arises with Aglets as well as Ajanta. Moreouinni 2004 [28]
is a tool for programming Prolog-based mobile agents. J@i4 has been
specially designed to support orthogonal language caststronamely program
composition and code reuse mechanisms, Prolog-baseérietemechanisms,
execution of multiple independent goals in both co-roatinand multithreaded
execution mode, agent coordination and communication,ciiadt-server re-
mote calls. Developers can use Jinni 2004 to exploit preactirong mobility
by embedding mobility primitives in their agents’ code. bmtrast, MoviLog
is based on a strong mobility mechanism that is quite traespand is Gered
in the context of an easy-to-use programming model basedamtive mobility.

Aglets introduced the concept of mobility patterns, thisrécurring solu-
tions that appear multiple times in mobile systems. Agletings a number
of predefined patterns and provides implementations fontseich asneeting

30 Alejandro Zunino, Cristian Mateos Marcelo Campo

(several agents are required to meet at a specific host ofxarkein order to
exchange messages), slave (an agent carries a message from one agent to
another). Despite the benefits in terms of developmgattehese patterns pro-
vide, developers are still in charge of programmaticallgdizag most mobility
decisions. Besides, the weak migration mechanism used letsAgas the same
problems as that of Concordia. Ajanta takes the concepirafriries a step
further by providing migration patterns, this is, abstraggrations paths for
agents. Examples are loop, selection, split and join. rdiries are composed of
a number of migration patterns. At each step of an itinerarggent may move,
perform a task, create or destroy other agents. These wotssprovide power-
ful tools for building mobile agent systems with complexdéraries. However,
these itineraries are defined at development time insteadraf-time as RMF
does. Then, Ajanta has problems targeting highly dynantieorés such as the
Internet or Computational Grids.

Other approaches such as MAGE [31], MobiPADS [32] and Poe38a |
support dynamic reconfiguration for mobility-based disited applications.
MAGE organize applications as a number of distributed camepts that in-
teract among them. Developers define, by employing an éwased script-
ing language, distribution strategies at the inter-coneporievel that can be
changed at run-time. Then, the code for handling mobilitnhastly separated
from the application logic. Furthermore, MobiPADS uses feective middle-
ware with meta-objects for reconfiguring object-orientgglizations. MAGE
and MobiPADS require however many modifications in the aaibn code.
For example, with MAGE, the programmer has to change the icotthe points
where components interact. Both tools only support mgtiiitsed on weak mi-
gration. Indeed, these approaches do not aim at being easg tout at fiering
some separation between application code and locatioreasoale. Moreover,
Poema [33] diers from these two works in its ability to specify mobilityate-
gies at a higher level of abstraction and to support theiméess modification
even during application execution. Strategies are spdcsiparated from the
application code by using an ad-hoc policy specificatiomlege. Precisely,
RMF+policies difers from MAGE and MobiPADS in that, like Poema, it sup-
ports true separation of concerns between the functiordd cbagents and the
mobility-related code, and its support for strong mignatiblowever, unlike Po-
ema, our work allows developers to both specify policies iamplement agent

A Semi-automatic, Malleable Mobility Model for Mobile Agen 31

behavior by using the same language, which provides unif@arm

Some Java-based platforms support strong migration bgreéktending
the Java Virtual Machine (JVM), or automatically transfamgnordinary Java
source codes to their mobile counterpart. For example, NOBKA34] uses a
special virtual machine called AromaVM, which is a from $chaimplemen-
tation of the Java Virtual Machine capable of capturing aadgferring thread
execution state. This idea is still around with programmiogjs like Mobile
JikesRVM [35], which extends a JVM or their own called JikesRwith mo-
bility functionality. However, these approaches are larisince interoperability
at the JVM level is compromised. X-KLAIM [36] modify Java skes for cap-
turing and reestablishing the state of running threads lyyngeon source-to-
source translation. As an advantage, X-KLAIM does not negan extended
virtual machine. However, the modified code is very hard tarand debug,
which compromises code maintainability.

Moreover, there is a substantial body of works regarding jéatforms for
developing computing intensive parallel applications.ctsdforts have born
as a consequence of the increasing availability of comiouiat power such as
multi-core machines, clusters, Grid and Clouds. As an exanroActive [37]
allows developers to construct applications by composiobgila entities called
active objects Active objects serve method calls from other (remote)\vaabr
regular objects, and viceversa. Active object creatiooklgp and mobility are
programmatically performed via API function calls, whigyguires knowledge
on the ProActive API. Besides, the tool is based on weak ritypbNoreover,
JavaSymphony [38] and Babylon [39] are two Java platfornasufing semi-
automatic execution model that transparently deals witration, parallelism
and load balancing of thread-based applications. Progeasioan control such
features by means of API primitives in the application codedptimization
purposes. However, JavaSymphony and Babylon do not pbesany mecha-
nism for separating the optimization code from the pure tional code of an
application. Finally, mobility for complex systems is natly circumscribed to
Java, as evidenced by other mobile agent platforms impleaddn compiled
languages. A representative example is Mobile-C [40], Wisigpports migra-

tion of both C and @+ codes. Unfortunately, Mobile-C is also based on weak

mobility, thus it is not able to transfer and restore the akea state of mobile
agents.

32 Alejandro Zunino, Cristian Mateos Marcelo Campo

All in all, the main advantage of our approach is its capgbilor auto-
matically handling mobility, including dynamic itineras, while being more
efficient than traditional proactive mobile systems. In additiRMF+policies
requires less overall code than related approaches. Assegoence, agents
are smaller, use less network bandwidth to migrate, andasiereto develop,
understand and maintain. Another important advantage o&pproach is the
separation of agent behavior and mobility, which improvesduality of the re-
sulting agent code from a software engineering perspeckugally, MoviLog
runs on existing versions of the JVM, thus ensuring JVM-lavieroperability.

6. Conclusion

In this paper we have described an extension of RMF aimed @towing its
efficiency and flexibility by allowing the developer to adapt thechanisms
used by RMF for performing mobility decisions. Conceptyatiur approach
shows that mobility can be supported by the middleware sbrttadbility can
be used as easily as any other technology for distributemgssuch as RPC,
RMI or CORBA, without sacrificing the above aspects. Themsitn presented
in this paper has been implemented and compared with (d@awer, proactive
mobility and RMF. The experimental results are very encgitia since they
show important gains in performance and reduced networ&vaiath.

By employing our extended approach, the performance oficgijans is
competitive compared to the one achieved with RMF or tradil forms of mo-
bility. Besides, mobile agent development is simplified trelcore agent func-
tionality is separated from code for handling mobility. Hoxgr, despite the ob-
tained results, we are planning to use our new support torexget with more
elaborated applications and other scenarios. A recenessfid experience that
could be used as a starting point for more experimentatighi®nos [41], a
mobile-based meeting scheduling system that is entirelgldped in MoviLog.

Another issue with RMF is its requirement fdifieient group communica-
tion services or multi-cast in order for a MARIet to keep kac the resources
other MARlets have. This is flicult to achieve as most approaches for multi-
cast either require special network routers or are spgai@signed for multi-
media content. In addition, most of them have problems liagadhore than
1000 hosts and multiple senders, which might restrict th@ieability of our

A Semi-automatic, Malleable Mobility Model for Mobile Agen 33

platform. To dficiently support reactive mobility in large scale deploytsemne
have developed a novel group communication mechanism n&ReC taking
into account the special requirements of RMF [27].

We are also exploring an extension of RMF for handling renrotecations,
in addition to mobility and fetching. In essence, the idethit given anm-
failure, RMF should be able to do whatever is necessaryféziively solve the
m-failure. In this context, there are three alternativesmbye the agent where
the resource is located, 2) move the resource where the egkaated or 3)
use some remote invocation mechanism for accessing theroesdNote that 2)
is only possible if the resource is transferable while 3)asgible if the resource
accepts remote calls, for example, a shared printer, a Webrser a database.
From this, we have already obtained some interesting seg&20{.

Despite the description of RMF and policies were tied to Nlog, the
concepts can be applied to other programming languages laslngeed, we
have developed a prototype Java-based platform with sufggd®MF and poli-
cies [26]. The platform does not require an extended JVMida#yg, this ap-
proach has been historically followed by many mobile agptaforms as Java
does not allow by default to obtain the execution state ofiegions and their
threads, which is precisely mandatory to support strongatian. Our proto-
type platform relies on run-time techniques for bytecodedification (the bi-
nary code generated by the Java compiler) to replicate th1@Vel execution
state of threads as application-level stacks on the Jaya hdech are accessed
upon migrating an agent. In this way, neither the JVM nor thérce codes of
applications areféected.

Finally, we are investigating how to adapt MoviLog in orderrhake it
FIPA compliant, a well-established international assimiathat delivers stan-
dard specifications that support the materialization arimperable agent plat-
forms. We aim at allowing MoviLog agents to interact with Al@nabled plat-
forms and multi-agent systems. As a starting point, we valdour study on
a recent FIPA-inspired proposal for interoperabiebileagent techniques and
platforms [42].

34

Alejandro Zunino, Cristian Mateos Marcelo Campo

Acknowledgments

We acknowledge the financial support provided by ANPCyT ugto grants
PAE-PICT 2007-02311 and PAE-PICT 2007-02312.

References

[1] Alejandro Zunino, Marcelo Campo, and Cristian MateossaBive mo-

bility by failure: When fail means movdnformation Systems Frontiers -
Special Issue on Mobile Computing and Communicati@{2):141-154,
2005.

[2] A. Tripathi, N. Karnik, T. Ahmed, R. Singh, A. Prakash, Wakani,

[3]

[4]

M. Vora, and M. Pathak. Design of the Ajanta system for mobdent
programming.Journal of Systems and Softwa62(2):123-140, 2002.

Robert Gray, George Cybenko, David Kotz, and Daniela.Riobile
agents: Motivations and state of the art. ity Bradshaw, editokland-
book of Agent TechnologpAAI PresgMIT Press, 2001.

S. Manvi and M. Kakkasageri. Multicast routing in mobae hoc net-
works by using a multiagent systermformation Sciencesl78(6):1611—
1628, 2008.

[5] Vijay Verma, Ramesh Joshi, Bin Xie, and Dharma Agrawabntbating

[6]

[7]

the bloated state problem in mobile agents based networktoniog ap-
plications. Computer Networks2(17):3218-3228, 2008.

Irene Sygkouna and Miltiades Anagnostoufiéent information retrieval
using mobile agents. Uith International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS/0Bjges 1241-1242, New
York, NY, USA, 2005. ACM Press.

Subrata Kumar Das, Kurt Shuster, Curt Wu, and Igor LeMitbile agents
for distributed and heterogeneous information retrievaformation Re-
trieval, 8(3):383—416, 2005.

A Semi-automatic, Malleable Mobility Model for Mobile Agen 35

[8] Tainchi Lu and Chinghao Hsu. Mobile agents for inforrmatietrieval in
hybrid simulation environmentlournal of Network and Computer Appli-
cations 30(1):244-264, 2007.

[9] Luminita Vasiu and Qusay H. Mahmoud. Mobile agents ineléss de-
vices. Computey 37(2):104-105, February 2004.

[10] Mustafa Adacal and Ayse B. Benner. Mobile Web Servicesn
new agent-based frameworklEEE Internet Computing10(3):58-65,
May/June 2006.

[11] J. Nichols, H. Demirkan, and M. Goul. Autonomic workfl@xecution in
the Grid. IEEE Transactions on Systems, Man and Cybernetics - Part C:
Applicationsé Reviews36(3):353-364, May 2006.

[12] Munehiro Fukuda, Koichi Kashiwagi, and Shinya KobayasgentTeam-
work: Coordinating Grid-Computing jobs with mobile agent&pplied
Intelligence - Special Issue on Agent-Based Grid Compufih(2):181—
198, 2006.

[13] Yuhong Feng, Wentong Cai, and Jiannong Cao. Dynamimeaidentifi-
cation in mobile agent-based distributed job workflow exiecu Journal
of Parallel and Distributed Computing7(11):1137-1154, 2007.

[14] David Kotz, Robert Gray, and Daniela Rus. Future dicett for mobile
agent researcHEEE Distributed Systems Onling(8), August 2002.

[15] P. Fradet, V. Issarny, and S. Rouvrais. Analyzing namefional proper-
ties of mobile agents. 18rd International Conference on Fundamental
Approaches to Software Engineering (FASE’00) - EuropeantJoon-
ferences on the Theory and Practice of Software (ETAPS 20@@jure
Notes in Computer Science, pages 319-333, London, UK, M20C0.
Springer-Verlag.

[16] Antonio Carzaniga, Gian Pietro Picco, and Giovannindg Is code still
moving around? looking back at a decade of code mobility29ih Inter-
national Conference on Software Engineering (ICSE COMENO7),
pages 9-20, Washington, DC, USA, 2007. IEEE Computer Societ

36

Alejandro Zunino, Cristian Mateos Marcelo Campo

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Cidiane Lobato, Alessandro Garcia, Alexander Romahkgvand Carlos
de Lucena. An aspect-oriented software architecture fde aoobility.
Software: Practice and Experiencg8(13):1365-1392, 2008.

A. Milanés, N. Rodriguez, and B. Schulze. State of theiraheteroge-
neous strong migration of computatiorSoncurrency and Computation:
Practice and Experience20(13):1485-1508, 2008.

Fred Douglis. Ideas ahead of their timdEEE Internet Computing
12(5):4-6, 2008.

Cristian Mateos, Alejandro Zunino, and Marcelo Camp&xtending
MoviLog for supporting Web ServicesComputer Languages, Systems
& Structures 33(1):11-31, April 2007.

Alessandro Garcia, Carlos de Lucena, and Donald CowAgents in
object-oriented software engineerirfgoftware: Practice and Experience
34(5):489-521, 2004.

Alfonso Fuggetta, Gian Pietro Picco, and Giovanni \dgk/nderstanding
code mobility. IEEE Transactions on Software Engineerirtfi(5):342—
361, May 1998.

Alberto Silva, Artur Romao, Dwight Deugo, and Miguel iida Silva.
Towards a reference model for surveying mobile agent systemwu-
tonomous Agents and Multi-Agent Systemi€3):187—-231, September
2001.

Alejandro Zunino, Marcelo Campo, and Cristian MateddoviLog: A
platform for Prolog-based strong mobile agents on the WWRévista
Iberoamericana de Inteligencia Artificiadl(21):83-92, 2003.

Hyacinth Nwana. Software agents: An overvigmowledge Engineering
Review 11(3):205-244, September 1996.

Cristian Mateos, Alejandro Zunino, and Marcelo CampBRIM: An ap-
proach for easy gridification of applicatiorlSuture Generation Computer
Systems24(2):99-118, February 2008.

A Semi-automatic, Malleable Mobility Model for Mobile Agen 37

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Pablo Gotthelf, Alejandro Zunino, Cristian Mateosdaviarcelo Campo.
GMAC: An overlay multicast network for mobile agent platius. Journal
of Parallel and Distributed Computing8(8):1081-1096, 2008.

Paul Tarau. Agent oriented logic programming in Jind02. INACM Sym-
posium on Applied Computing (SAC’ 0®ages 1427-1428, New York,
NY, USA, 2005. ACM Press.

David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, ¥oung, and
Bill Peet. Concordia: An infrastructure for collaboratingpbile agents.
In 1st International Workshop on Mobile Agents (MA'9@ages 86-97,
1997.

Danny Lange and Mitsuru Oshima. Mobile agents with Jauze Aglet
API. World Wide Wep1(3):111-121, 1998.

Earl Barr, Raju Pandey, and Michael Haungs. MAGE: Ardistted pro-
gramming model. Ir21st International Conference on Distributed Com-
puting Systems (ICDCS ’'0lpage 303, Washington, DC, USA, 2001.
IEEE Computer Society.

A. Chan and Siu-Nam Chuang. MobiPADS: a reflective neddire for
context-aware mobile computindEEE Transactions on Software Engi-
neering 29(12):1072-1085, 2003.

Rebecca Montanari, Emil Lupu, and Cesare Stefanebilici-based dy-
namic reconfiguration of mobile-code applicatioi@omputey 37(7):73—
80, 2004.

Niranjan Suri, J&rey Bradshaw, Maggie Breedy, Paul Groth, Gregory
Hill, Renia Jdfers, and Timothy Mitrovich. An overview of the NOMADS
mobile agent system. Bth ECOOP Workshop on Mobile Object Systems:
Operating System Support, Security and Programming Lagegidune
2000.

Raffaele Quitadamo, Giacomo Cabri, and Letizia Leonardi. Mobil
JikesRVM: A framework to support transparent Java threagtation. Sci-
ence of Computer Programming0(2-3):221-240, 2008.

38

Alejandro Zunino, Cristian Mateos Marcelo Campo

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Lorenzo Bettini and Rocco De Nicola. Mobile distribdtprogramming in
X-Klaim. In Formal Methods for Mobile Computingolume 3465, pages
29-68. Springer BerlinHeidelberg, 2005.

Laurent Baduel, Francoise Baude, Denis Caromel, Adrizantes, Fabrice
Huet, Matthieu Morel, and Romain QuiliciGrid Computing: Software
Environments and Toaglshapter Programming, Composing, Deploying
on the Grid, pages 205-229. Springer, Berlin, Heidelberd,ew York,
January 2006.

Alexandru Jugravu and Thomas Fahringer. JavaSymphanypro-
gramming model for the Grid.Future Generation Computer Systems
21(1):239-246, 2005.

Willem van Heiningen, Steve MacDonald, and Tim BrecHBabylon:
Middleware for distributed, parallel, and mobile Java &mtlons. Con-
currency and Computation: Practice and Experien2@(10):1195-1224,
2008.

Yu-Cheng Chou, David Ko, and Harry Cheng. An embeddabisile

agent platform supporting runtime code mobility, intei@ttand coor-
dination of mobile agents and host systemaformation and Software
Technology52(2):185-196, 2010.

Alejandro Zunino and Marcelo Campo. Chronos: A mugieat system
for distributed automatic meeting schedulirgxpert Systems with Appli-
cations 36(3):7011-7018, 2009.

J. Cucurull, R. Marti, G. Navarro-Arribas, S. Robles,®vereinder, and
J. Borrell. Agent mobility architecture based on IEEE-FIB#ndards.
Computer Communication82(4):712—-729, 2009.

