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Abstract. Grid technologies allow developers to run applicationshveihormous
demands for resources such as processing power, data amorkédtandwidth.
However, exploiting Grid resources demands developersrid-&vare their ap-
plications by explicitly accessing the services of spec#it middlewares, which
involves more development effort and requires expertisé&sad programming.
A number of recent research efforts knowngalification methodsim to avoid
these problems by semi-automatically deriving the Gridbded version of an ap-
plication based on either its source code or binary code.t Mbthe approaches
belonging to the second group produce coarse-grained @plications that pre-
vent programmers from employing tuning mechanisms suchdlgism and dis-
tribution, and are rather inflexible, since they were nofigies to reuse existing
Grid middleware services. We present BYG (BYtecode Grigifia new gridifi-
cation method that allow developers to easily gridify bjndava applications and
solves these issues. The paper describes the prototypenaptation of BYG and
some experiments showing the feasibility of the approasipeEments show that
BYG can be used to transparently gridify and efficiently exea broad range of
resource-intensive applications.
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Introduction

Grid Computing is a paradigm for distributed computing lobse arranging geographi-
cally dispersed computational resources to execute reseatensive applications [11].
Typically, Grid applications are intended to solve sci&ntir engineering problems that
require by nature huge amounts of computational resoutcgsas CPU cycles, mem-
ory, network bandwidth, data and services. Examples of apghications include pro-

tein folding, financial modeling, aerodynamic design andtier simulation. Just like an
electrical power grid, computational Grids are pervasamputing environments whose
goal is to provide coordinated resource sharing acrossrdift administrative domains
to meet complex user demands [13].
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Figure 1. Gridifying applications: a simple taxonomy

Looking back into the history, the first attempts to estdibsids were focused on
creating infrastructures to support CPU-intensive, lesgale applications by linking su-
percomputers [14]. With the inception of Internet standandthe 1990s, Internet-wide
Grids became a reality. Consequently, applications thatéged idle processors of thou-
sands of Internet-connected PCs begun came into existdnegresentative example
is SETI@home [3], a desktop application by which users hage& PCs process radio
signals from the outer space, helping in a global searchxXwaterrestrial life. Similar
initiatives are Folding@Home and Genome@Home [17].

Few years later, after the introduction of this form of paltbmputing, the first
Grid middlewares appeared. Examples of popular middlesvareGrid development are
Globus [12], Legion [24], Condor [29] and UNICORE [10]. Rdug the goal of these
technologies is to virtualize the various resources of a By means okervices(e.g.
job scheduling, load balancing, brokering, monitoringtadaovement, security, etc.),
and also to supply developers with rich APIs for using thesgises. Essentially, Grid
middlewares sit in the middle between applications and Gfi@structures by adding a
software layer comprising specialized services that g®vast execution capabilities.

Besides producing more and better Grid services to apjaitgtrecent research in
Grid middlewares has put emphasis on teasumabilityof the delivered services [21].
Concretely, researchers have been trying to exploit mwatles by providing program-
ing tools, frameworks and libraries that simplify the comguion of their services from
within user applications. The ultimate goal of these tedbgies is to come out with
facilities to allow Grid application developers to beneffiirh middleware services with
little if any implementation and configuration effort.

Works in this line of research can be grouped into progrargnaolkits and gridifi-
cation methods [21] (see Figure 1). The idea behind progragnolkits is to provide
programming APIs and constructs that abstract away thessange details to interact
with Grid middleware services [30,2,25,6]. By using thes@g, Grid programming can
be done at a higher level of abstraction, so that less effattiane is required when em-
ploying Grid toolkits versus directly using middleware ARIHowever, as Grid toolkits
are in essence programming facilities, they usually asghatedevelopers have a solid
knowledge both on Grid programming and the features offbyethe particular toolkit
being used.

Alternatively, the goal of gridification methods is to allal@velopers to incorporate
or to “inject” Grid services into existing applications Witittle effort. In other words,
these methods focus on semi-automatically (ideally, aataally) transforming exist-
ing codes to run on a Grid rather than programming Grid appbas from scratch.
Therefore, they are mainly intended to support users hditregor even no background



on Grid technologies. Furthermore, gridification methoals accept as input either the
source code of ordinary applications [4,31,22] or their pded versions [9,15,23]. Intu-
itively, the first approach allows developers to have morgrd over the internal struc-
ture of their applications, thus very efficient Grid apptioas can be built. Nevertheless,
the second approach allows to gridify applications evennatheir source code is not
available, removing the need for the tedious code-cong@lgloy sequence when build-
ing Grid applications. In this way, gridifying an appliaati just involves submitting it
“as is” for execution on a Grid platform.

One major problem of the current techniques for gridifyimggoy code is that they
usually prevent the usage of tuning mechanisms suitablexploiting Grids. After
gridification, applications are essentially coarse gréimeonolithic Grid-enabled codes
whose structure cannot be altered to make better use of &udirces. Specifically, most
of these approaches do not prescribe mechanisms for distigbor parallelizing indi-
vidual parts of an application. To sum up, although they #yeamplify gridification,
employing these approaches may potentially lead to a p@gyeusf Grid resources. This
represents a trade-off between ease of gridification vélexibility to configure the run-
time aspects of gridified applications [21]. As a conseqeetiere is a need for alter-
native gridification methods that provide a convenient ibe¢gebetween the effort devel-
opers have to invest when deploying and running legacy codesGrid and thgridifi-
cation granularity the size of gridified applications from a runtime perspecf21] and
therefore the levels at which their components can be tuned.

We propose a new gridification method for Java applicatiaited BYG (BYte-
code Gridifier), whose utmost goal is to offer an alternathechanism for effortlessly
Grid-enabling binary codes at various granularity levelsers indicate, via a configura-
tion file, the portions of their applications that are subjecexecution on Grid middle-
wares. Moreover, BYG does not reinvent the wheel by progdiet another Grid job
submission system, but offers a glue between conventionatypJava applications and
the execution services of existing platforms (e.g. Con@tobus, etc.). Basically, BYG
works by dynamically instrumenting the ordinary bytecoaléé compliant with the ap-
plication anatomy prescribed by the target middleware deixpents show that BYG en-
ables for easy and fine-grained gridification for a wide ramiggPU-intensive applica-
tions, and effectively leverages existing Grid executierviees while not incurring in
much performance overheads compared to directly empldyiese services to gridify
applications.

The rest of the paper is organized as follows. The next sedtiscusses related
works, and explains how the BYG approach improves over ti&aution 2 overviews
the BYG approach. Later, Section 3 describes its designrapteimentation. After that,
Section 4 reports an experimental evaluation of BYG. Fn&kction 5 concludes the
paper.

1. Related work

To date, several approaches for gridifying software haemlpgoposed in the literature.
It is worth noting that the approaches that accept as inputceocodes are out of the
scope of this paper (see [21] for a detailed discussion om}hleut we will focus on
approaches aimed at gridifying binary codes. Table 1 suraesmthese efforts.



Table 1. Existing approaches for gridifying binary codes

Tool Binary code flavor Gridification Exploitation of other
granularity Grid platforms
GEMLCA Machine-dependent Coarse-grained Partially (@llybus)
GridSAM Machine-dependent Coarse-grained Yes
Laskowsky etal.  Machine-independent Fine-grained No (runs on plain JVM
(bytecode) (thread level) clusters)
LGF Machine-dependent Fine-grained, No (uses custom RMS)
coarse-grained
ProActive Machine-independent Coarse-grained Yes
(bytecode)
Satin Machine-independent Fine-grained Partially (uses custom
(bytecode) RMS; some integration
with Globus)
\olta Machine-independent Fine-grained No (uses custom RMS)
(CIL)
XCAT Machine-dependent Coarse-grained Yes

GEMLCA [9] lets users to deploy a legacy program as an OGSwwat@mnt service.
The access point for a client to GEMLCA is a front-end offgrimperations for gridi-
fying legacy codes, and also for invoking and checking thtustof deployed Grid ser-
vices. To execute the gridified codes, GEMLCA uses the GIoBERAM job submis-
sion service. The user is responsible for specifying metautdormation (parameters,
executable path, etc.) and resource requirements (pasessemory, etc.) for its appli-
cation in an XML configuration file. GEMLCA relies on a very mgmanular execution
scheme for these services (i.e. running the same binaryaodae or more processors)
but no internal changes are made in the gridified applicatibhen, parallelism and dis-
tribution of individual portions of the application canrtm controlled in a fine-grained
manner.

GridSAM [23] allows users to publish legacy applications/ésb Services. Grid-
SAM then treats these services as a number of separate cemppwhich can be com-
posed via a workflow description document that is processddaecuted according to
resource requirements on top of other Grid platforms. Wnilile aforementioned tools,
GridSAM does not in itself provide the functionality of a Resce Management System
(RMS), but instead acts as a common interface to existind {8k execution services.
The same principle is followed by [1], but it is even more feed on integrating different
Grid job submission and storage services rather thantttailg the construction of Grid
applications.

XCAT [15] supports distributed execution of componentdzhapplications on top
of existing Grid platforms (preferably Globus), linkingraponents to concrete platform-
level execution services. In addition, application congmas can also represent legacy
binary programs. XCAT allows developers to build compleplagations by program-
matically assembling service components and legacy coeenThough this task can
be carried out with little coding effort, it still requiresggramming and therefore re-
quires knowledge on the XCAT API. As both GridSAM and XCAT4te input legacy
codes as black boxes, these tools share some of the limiadsfdSEMLCA with respect
to granularity of gridified applications. Finally, LGF [5} an execution and monitoring
framework that allows users to deploy legacy applicatian$\Ve@b Services. Central to



its design is a two-layered architecture in which the adaptaservice layer is heavily
decoupled from the legacy back end layer. With LGF, it is fmiedo monitor the perfor-
mance of gridified applications at the service, legacy apfithtn and code region level.
However, the framework is not designed to take advantageisfirey Grid execution
services such as those provided by Condor and Globus.

With respect to tools that gridify machine-independentbjrcodes, [18] proposes
a method for transparent execution of multi-threaded Jaydications on clusters of
JVMs deployed on desktop Grids. First, the tool derives lgsdpm the compiled byte-
code of an application by using representative sets of idatd. Roughly, the graphs
account for data and control dependencies within the agpdic. Then, a scheduling
heuristic is applied to place certain mutually exclusive@xion paths extracted from
the graphs among the nodes of a JVM cluster. In oppositior; B¥ns to gridify single-
threaded Java applications by leveraging existing execstrvices suitable for exploit-
ing Internet-wide Grids. ProActive [4] is another Java foan for parallel distributed
computing that providetechnical servicesa flexible support that allow developers to
address non-functional concerns (e.g. load balancingauittblerance) by plugging ex-
ternal configuration to applications at deployment timeAetive allows users to deploy
ordinary classes as mobile entities on a Grid without codédifitation by exposing their
operations through a number of protocols (RMI, Web Serviets). ProActive features
integration with a wide variety of Grid schedulers. Unfarately, creating computations
based on a subset of the methods of an ordinary class unalpi@guires to manually
use the ProActive API within the source code of the input agtibn.

In addition, there are other tools that followhgbrid approach to gridification of
binary codes, in which developers are actively involvedimprocess of altering an ap-
plication to gridify it. Satin [31] is a Java framework foridifying and parallelizing di-
vide and conquer applications. The user is responsiblenfticating the points in the
application code in which a fork (i.e. a recursive call theata be handled in parallel)
or a join (i.e. to wait for child computations) should takeg#. Then, Satin instruments
the compiled code so as to transparently handle the exeaftiparallel tasks in a Grid.
Similarly, Volta [19] recompiles executables .NET appticas on the basis of declara-
tive developer annotations, inserting remoting and syomiaation primitives to trans-
parently transform applications into a distributed forns. ®ecompiling operates at the
CIL (.NET Common Intermediate Language) level, Volta is patible with a broad va-
riety of NET programming languages. However, the weaktafithese tools is that they
require modifications to the source code of applicationsrgd actually Grid-enabling
their compiled counterpart.

While the above approaches are targeted at supporting wéérittle knowledge
and expertise on Grid technologies, some of them (Satina)M@re some way off
from being true binary code gridifiers, as they require coaslifications on the input
applications. Furthermore, some of the approaches (GEML@AISAM, ProActive,
XCAT) offer a poor balance to the “ease of gridification verdunability” trade-off,
since they completely avoid the requirement of code modifinabut gridification re-
sults in coarse-grained Grid applications that cannot beified for reconfiguration or
paralellization purposes. Finally, only a small numbethefanalyzed approaches are de-
signed to exploit the execution services of other Grid plaitfs. However, a recent trend
in Grid Computing, as evidenced by broadly adopted Griddsiess such as OGSA and
WSRF [8], is to promote interoperability and therefore gretion among Grid tools and



middlewares. In this sense, Grid middleware integratioapédly becoming the rule and
not the exception.

2. BYG

To address the above problems, we propose BYG (Bytecodéfi@rida new gridifi-
cation method that aims at dealing with the above tradespfétiing developers to in-
troduce tuning into their applications with little effoand minimizing the configuration
and deployment effort that is necessary to put a Grid appdicao work. Furthermore,
the approach offers mechanisms to easily produce efficigdt&vare applications, but
it does not seek to provide yet another runtime system or leidte for supporting ap-
plication execution. Instead, our research aims at levegabe services of existing Grid
platforms through the use obnnectorsBasically, a connector materializes the protocol
to access the various execution services provided by afgp€eid platform. Connec-
tors are non-invasively injected into the application jneode in order to dynamically
delegate the execution of certain parts of the applicaban®rid platform. In addition,
connectors are responsible for transparently adaptingitteey codes to take advantage
of the API library provided by the target platform. Rougtthye mapping of which parts
of an application whose execution is delegated to particatal services is specified by
means of user-supplied configuration external to the agidic.

BYG specifically targets component-based applicationdempnted in Java. On
one hand, we chose Java as it is broadly adopted by devel@ssisles, the JDK pro-
vides many features and libraries that facilitate the qoetibn of distributed execution
environments, such as sockets, object serializationnsitike class loading, reflection,
amongst others. On the other hand, component-based progngnis commonplace in
Java development, which is evidenced by the high populafiggeveral component pro-
gramming models such as JavaBeafs)B® and Dependency Injection [16]. For these
two reasons, our tool could benefit a large amount of todgpdieations.

Component-based development emphasizes on buildingcafiphis in which func-
tionality is split into a number of logical components witkelvdefined interfaces. Every
component is designed to hide their associated implenment&b not share state, and to
communicate with other components via message exchanpérj2fie end, application
components only know each other’s interfaces and are ealaned, which yields as a
result reusable and decoupled building blocks where iated are abstracted away from
implementation (i.e. each component is materialized thinoone or more classes plus
an interface) and any kind of interaction that involves tigttoupled communication or
state sharing is disallowed, such as invoking componentatipas by passing arguments
by reference.

Figure 2 depicts an overview of BYG. Conceptually, BYG takesnput the com-
piled version of an ordinary component-based Java apitaand dynamically trans-
forms it so as to run some component operations on differeidti@iddlewares. In this
sense, BYG can be seen both as a competitor of existing agmeand a complement
to them. The developer is responsible for indicating whiphkrations should be handled
by external services, and for each one of them which specifidleware should be used.

2JavaBeanst t p: //j ava. sun. conl j avase/ t echnol ogi es/ deskt op/ j avabeans/ docs/ spec. ht m
SEnterprise JavaBeamst p: // j ava. sun. cont product s/ ej b
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Figure 2. Overview of BYG

The runtime support of BYG is in charge of processing the liger configuration, in-
tercepting all invocations to this kind of operations (irstbasepperation1), and delegat-
ing their execution to the associated target Grid middlewrthis case Condor). Some
evident benefits of this approach are:

Gridification effort Gridification requires less effort. The programmer justcses
which parts of its application should be executed on a Gridrenment, but with-
out explicitly coding the application to do so. Besidesdiitation is possible
even when the source code of an application is not availabkddition, the Grid
services associated to an application can be straightfdtydetached by simply
modifying its associated configuration.

Flexibility Depending on the nature of each component operation, aelitf&rid ex-
ecution service could be used. For example, all invocationan embarrassingly
parallel operation may be sent to a Grid platform able to eteethem concur-
rently, thus improving performance and scalability. Sarli, all mission critical
computations may be submitted to another Grid platform igiiog fault tolerance
capabilities.

Tunability Unlike related tools, in which applications are mostly exed on a black
box fashion, BYG allows developers to fine-tune the exeoutibtheir applica-
tions by submitting calls to component operations in pat#&d different Grid mid-
dlewares. More details on this support can be found in Se&tib.

Service availability The developer is asked to specify which Grid execution servi
should be employed to execute a component operation. Hoyatthe time of ex-
ecuting the application, the service might not be availéblg. the Condor cluster
that was supposed to run the application is temporarily owmen, BYG could
choose an alternative service to still allow the user to hendpplication.

BYG does not aim to automatically gridify any kind of applicen and exploit any kind
of Grid middleware. First, our approach is specifically dasd to gridify component-
based applications written in Java. This ensures thategifwin components are heavily



decoupled and do not share state, thus component operatiarise run in a different

memory address space without worrying about which compdesned the invocation

or how the operation arguments/results are interchangexhrel, depending on the par-
ticular connectors being used, operations must adherertait@xtra coding conven-

tions. Nevertheless, following good object-oriented ficg&s such as employing proper
method modularization, placing the result of calls on logaiables, and avoiding pa-
rameter passing by reference is usually enough to prepasp@itation to use various
connectors.

We have developed a proof-of-concept implementation ofamproach, which is
described in Section 3. It is basically implemented by mexditkejava.lang.instrument
package of the JDK, which provides facilities for transfargiclass files at class load
time. Based on this support, the prototype works by instnting bytecodes to delegate
the execution of certain component operations to extermal €&ecution services, this
is, offered by existing Grid middlewares. BY G-enabling &neady compiled application
only requires the user to (a) configure an XML fitat instructs BYG how to map com-
ponent operations to Grid execution services, and (b) adévaargument to the boot-
strap script that initiates the user application. The imp@atation of this prototype as
well as the applications used in the experiments descritedih this paper are available
upon request.

At present, our tool provides a connector for accessing émeices of the Satin
platform [31], which provides support for executing andal@lizing divide and con-
guer Java computations on LANs and WANSs. Basically, thisnemtor automatically
generates a Satin application based on the bytecode of araordpplication compo-
nent. Furthermore, the development of connectors for Coadd ProActive [4] is un-
derway. This will enable developers to take advantage diii§rid functionalities not
present in Satin such as monitoring and administratingingnoomputations. This in-
tegration is in principle viable from a technical point okwi since ProActive is also
implemented in Java, and there are successful experiendategrating Java and Con-
dor clusters [28]. It is worth noting that both BYG and its i@mt implementation are
strongly inspired by concepts and ideas derived from pressiesearch in the context of
the JGRIM project [22], a method for Grid-enabling Java sewode.

3. Implementation

The first step to put any conventional application to exeame Grid with BYG is
to create the corresponding XML configuration file. This XMlefspecifies relevant
parameters that BY G needs to Grid-enable the applicatimi, &s the components to be
gridified, and the binding information that depends on thiel @Griddleware(s) to which
BYG will delegate the execution of these components, nartifeyentry point of the
middleware(s) and the job submission protocol used in easé.c

A user application may have many parts suitable for exenuio a Grid. In this
sense, BYG allows applications to be gridified at a fine-grdilevel, this is, any com-
ponent operation can be configured by the user to be subroitteda Grid middleware.
To this end, the user must provide:

4We are currently working on graphical tools to further siifyptonfiguration



1. The list of operations or Java methods (owner class, dethme and parameter
types) to be gridified. Roughly, the owner class allows BYGmambiguously
identify methods with the same signature but implementeditbgrent classes.

2. The connector to be used (and consequently the Grid éaaadrvice). As we
suggested in the previous section, this decision will inegahdepend on the
nature of the operation being gridified.

3. The job submission protocol over those provided by theneotor(s) being em-
ployed. For example, Condor provides a remote job subnmss&chanism based
on raw sockets, but it also offers a Web Service submissiterface. Conse-
qguently, the user is responsible for selecting the spedificspubmission protocol
when more than one choice is offered by the target middleware

<connectors xmlns:xsi="http: //www.w3.0rg/2001/XMU&ma-instance"
xsi:noNamespaceSchemalLocation="bygConfigurationd."es
<connector name="example">
<middleware name="satin">
<property name="protocol">raw_sockets</property>
<property name="host">192.168.19.79</property>
<property name="port">5432</property>
</middleware>
<classes>
<class name="Fibonacci">
<methods>
<method name="fib">
<parameter type="long"/>
</method>
</methods>
</class>

</classes>
</connector>

</connectors>

The above configuration tells BYG to execute via the servadéle Satin platform
(lines 4-8) a specific method from thRbonacci class (lines 10-16). The name of the
class must be fully-qualified. Of course, it is possible téraemore than one connector
within a configuration file, and associate several classésnagthods to them. In its
current shape, BYG requires developers to deal with coimftjatonnectors, this is, to
avoid associating the same class method to more than onectonn

To inject connector code, BYG takes advantage ofdtslang.instrument package,

a feature starting at Java 5 that defines an API for modifyingdndes by transforming
their associated class files at load time. The instrumemtatackage is intended to be
extended through special libraries called Java agentsva dgent is a pluggable user
library that runs embedded in the JVM and customizes thes dtzding process. An
agent works in front of the main application method, exezote the same JVM as the
application, is loaded by the same system class loadersaymerned by the same secu-
rity policy and context. Basically, the kernel of the medisamfor dynamically injecting
connectors in BYG is implemented as a Java agent.

Figure 3 illustrates the differences —from a runtime pectipe— between executing
an ordinary Java application in the usual way (left) verstesating it by taking advan-



- Java Virtual Machine . Java Virtual Machine

Java : . Java
Class Loader - runtime : Class Loader = runtime
/ . class files : / - class files

User Bytecodes User Bytecodes
application / : application
class:files : class-files _
: Execution Engine Gridified

bytecodes

e : : Execution Engine
Native method invocations

I Native method invocations

Host Operating System

Host Operating System

Figure 3. Rewriting bytecodes on the fly: The BYG agent

tage of the BYG agent (right). The agent library is simply &RJ@ava ARchive) file

that contains a special bootstrap class wiireamainmethod, which is from where the
class transformations are triggered. This method is inddiethe JVM every time the
application requests to load a class, and its signaturefidlaws:

public static void premain(String agentArguments ,
java.lang.instrument . Instrumentation instr);

The first parameter is a string representing the commandligements passed to
agent, while the second parameter is a Java object maidthinthe JVM that provides
services to register/deregister class transformersjrobtathe classes already loaded
into the JVM, etc. Basically, the above method is the hook Ijctv BYG configures
and injects connector code into classes according to tbhenration supplied by the user
in the configuration file. To BYG-enable an application (iceuse the BYG agent), the
startup command that executes the main application classlouk like:

java —javaagent :bygAgent. jar=<configfile > <Main—Class> ...

When the user application starts, the agent reads the coaffigu file and extracts
both the methods to gridify and the connectors to use. Bagethis information, the
BYG agent dynamically instruments the bytecodes of theselmewning these methods
as these classes load. Furthermore, instrumenting aridodiclass method implies:

1. To rewrite its body in order to include the necessary urtdtons to launch the
execution of its bytecode on a specific Grid middleware. Tijecied “stub” will
employ the middleware-related information extracted frti® connector asso-
ciated to the method (i.e. theotocol, host andport properties) to transparently
send an adapted version of the original method’s body focgtien via an exter-
nal Grid service interface every time this method is callgthie application. The



stub is created and injected by using Javagsishigh-level library for modifying
and creating classes and methods at runtime.

2. To adapt its original bytecode to take advantage of thalleigare the method
was connected to. In other words, this adaptation involvgsepare the method
as well as the structure of its owner class to the code anapmescribed by
the target Grid middleware. For example, some platformairegpplications to
extend from middleware-specific API classes, use certaihcals to carry out
object distribution and parallelism, make all objects toskealizables, and so
on.

The transformations described in the above steps strorgggrtl on the Grid middle-
ware selected for execution. In the next subsection, wesfoatexplaining these mecha-
nisms in the context of Satin, for which the current versibB¥%G provides a connector.

3.1. The Satin connector

Satin [31] is a Java framework that lets programmers toyepailallelize divide and con-
quer Java applications. Satin provides two core primittegsarallelize single-threaded
conventional applicationspawn to create subcomputations (i.e. divide), aythg to
block execution until the results of subcomputations agdlable. Methods considered
for parallel execution are identified by meansnedrker interfaceshat extend thesat-
in.Spawnablénterface. Furthermore, a class containing spawnableaustextends the
satin.SatinObjectlass and implements the corresponding marker interfacaddition,
the result of the invocation to a spawnable method must bedgstmn a local variable. For
instance, the Satin version of the recursive solution tofuatethen™ Fibonacci number
would be:

public interface IFibMarker extends satin.Spawnable{
public long fib(long n);
}
public class Fibonacci extends satin. SatinObjectimplements IFibMarker{
public long fib(long n){
if (n< 2)
return n;
/I The next two calls are spawned according to IFibMarker
long f1 = fib(n — 1);
long f2 = fib(n — 2);
// Execution suspends until f1 and f2 are both instantiated
super.sync ();
return f1 + f2;
}

public static void main(String[] args){

Fibonacci fibComp =new Fibonacci();
long result = fibComp.fib(n);

5Javassisht t p: // wwv. ¢sg. i s. titech. ac.j p/ ~chi bal j avassi st



After specifying spawnable methods and inserting appat@gynchronization calls
into the application source code, the developer must feedpited version of the appli-
cation to the Satin compiler that translates, through Jstecbde instrumentation, each
invocation to a spawnable method into a Satin runtime taskekample, from the code
shown above, a task is generated for every single call téittmeethod.

The purpose of the Satin connector is to automatically myee the above code
structures from the compiled version of the components afrdinary application, this
is, an application which has not been coded to take advamthtee Satin API. The
Satin connector generates the marker interface(s) bastet@montents of the XML file
associated to the application, and rewrites the bytecodreofomponent(s) in order to
extend and implement the required API classes and intexfataddition, the connector
automatically inserts proper calls $gnc by deriving a high-level representation from
the bytecode and analyzing the points where a barrier musttimeluced. These tasks
are explained in detail in the next subsection. To execlgeSdtin-enabled version of
components, this connector relies on an extended Satimrevhich is explained in
subsection 3.1.3.

3.1.1. Client side processing

Besides injecting proper bytecode to transparently exeordinary methods on Satin,
the Satin connector is responsible for dynamically adgptie bytecodes of both these
methods and the classes owning them to be compliant to theajgn anatomy de-
scribed in the previous section. Thus, based on a compiledectional class, the Satin
connector carries out two main tasks:

e Marker interface generation: As explained, Satin requinesapplication to im-
plement a marker interface, which explicitly list the medkdhat are considered
by Satin for parallel execution. The Satin connector autaaby builds this in-
terface from the methods listed in the XML configuration fbe tclass being
connected to the Satin services. For creating the correlipgiclass file for the
interface, the ASM library is employed. Generated interfaces are suffixed with
“ Spawnable”.

e Class generation: Satin requires applications to impleéraanarker interface as
well as to extend fronsatinObject. In this sense, a clone (from now peel) of
the non-gridified class under consideration is created astiumented to fulfill
these requirements. Again, cloning is performed by usingskst. Generated
peers are suffixed with “_Peer”.

Figure 4 depicts all the steps performed by the Satin connezxbuild the Satin-enabled
version of an ordinary class. The connector receives ad inpon the BYG agent the

ordinary class being gridified (actually, its bytecode) #meltarget method(s), and cre-
ates the corresponding marker interface and a Satin pedt. fora subsequent step,
based on an heuristic algorithm we have specially desighed;onnector automatically
inserts calls to theync primitive at appropriate places of the parallel methodshef t
generated peer. This algorithm is explained in the nextestttum. Afterwards, the peer
is processed with the bytecode instrumentation tools oSdwin platform. At runtime,

the final peer will be instantiated at the client side by thdirtary application and sub-

6ASM ht t p: // asm obj ect web. or g



Ordinary code

Instrumented code (without barriers)

public class Fibonacci
public long fib(long n)
if (n<2)
return n;
long f1 = fib(n - 1);
long f2 = fib(n - 2
return f1 + f

public class Fibonacci_Peer
extends SatinObject
imglements Fibonacci_Spawnable {
public long fib(long n)
if (n<2)
return n;

long f2 = fib(n - 2

Satin-enablea
bytecode

4) Satin instru-
mentation

Instrumented code (synchronized)

long f1 = fib;n - 1;;

. ; ublic class Fibonacci_Peer
retum f1 + f2; pexte.nds ... implements ... {
} public long fib(long n){

if (n<2)

1) Marker .
3) Barrier
insertion 3

interface
generation

public interface Fibonacci_Spawnable {

}public long fib(long n);

2) Class

return n;
long f1 = fibEn - 1;;
generation

long f2 = fib(n - 2
sync();
}re¥urn91 +12;

}

Figure 4. The Satin connector: Satin-enabling ordinary bytecode

mitted for execution through our socket-based interfac8atin, which is discussed in
Section 3.1.3.

3.1.2. Barrier insertion

As explained, when programming a conventional Satin appiio, the results of recur-
sive calls to parallel methods must be placed on local veegald-urthermore, before
reading such variables, the developer is responsible $arfimg a call to theync prim-
itive, which ensures that recursive results are alwaydaai before they are accessed.
The step 3 in Figure 4 automatically reproduces this tas&ishthe connector analyzes
the bytecode generated at the previous step and then rewhigebytecode in order to
insert barriers at the right places.

Intuitively, a naive solution to this problem is to blindligge such a barrier right be-
fore any access to a local variable. However, we found thastilution generated more
calls tosync than needed and negatively affected the performance otthdting peer.
As a consequence, we designed an heuristic that aims atifmgsarminimal number of
synchronization barriers and at the same time preservimgéimantics of the original
code. The algorithm works by deriving a high-level, ad-hegresentation of the byte-
code instructions to carry out the analysis as much clogeetgsdurce code of the appli-
cation as possible. This mapping relies on the fact thaetlsea direct correspondence
between Java source and bytecode [7,26].

Java compiles the source code of methods as a number of,labels containing a
number of bytecode instructions. Individual labels forgjaint instruction blocks where
local variables are declared, calls to other methods afenpeed, goto-like directives to
jump to other labels are included, etc. Precisely, theimrlahips between the different
labels define the behavior in terms of control flow the progwithhave at runtime.
Figure 5 exemplifies these notions. The instructions of thece code shown on the left
are compiled into seven labels (center), and gives origaitiock treecomprising three
nodes: one for the whole method, one representing the loogtieet, and finally one for
the conditional branch inside the loop. It is worth notingtthny node within a block
tree may have more than one child. The root of a block treeyswarrespond to the
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Figure 5. Deriving a block tree from bytecode

body of a method, whereas the rest of the nodes exclusiv@lgrikon the structure of
the sentences within this method.

To derive the block tree of a method, the Satin connectoryaralits bytecode in-
structions sequentially in order to find those that proviterimation about the higher-
level structure of the program, this is, loops, conditidm@nches, try/catch constructs,
and so on. Specifically, in Java, these instructions are ttes ¢hat perform jumps
within a method (IFEQ, IFNE, IFLT, IFGE, IFGT, IFLE, IF_ICMFQ, IF_ICMPNE,
IF_ICMPLT, IF_ICMPGE, IF_ICMPGT, IF_ICMPLE, IF_ACMPEQ,FI ACMPNE,
GOTO, JSR, IFNULL, IFNONNULL). As these instructions ar@#pd, the correspond-
ing block tree is built in such a way each block has a referéocavery single byte-
code instruction it contains, and also a pointer to everglblepresenting immediately
inner scopes. The result of this process is a high-levekatffjased view of the byte-
code, which is then used to insert synchronization barr&wme Java sentences, namely
switch/case and try/catch constructs are still not reczeghi

Precisely, the algorithm for inserting barriers works bylkirag through the instruc-
tions of a method and detecting the points in which a locabée is eitherdefinedor
usedby a sentence. A variable is defined when the result of a sphesraputation is as-
signed to it. On the contrary, a local variable is used whewudtue is read. Since to work
properly Satin allows variables to be read providesyac has been previously issued,
our algorithm operates by modifying the bytecode so as tarere call tosync is done
between the definition and use of any local variable, for aegetion path between these
two points. Moreover, async suspends execution unéll the subcomputations associ-
ated to defined variables have finished, our algorithm enspilog aforementioned tree
structure to as to keep the correctness of the program wiiiliemzing the inserted calls
to sync. Any local variable that does not represent results fronalfglrcomputations is
naturally ignored by the algorithm.

Algorithm 1 summarizes the process of identifying the poiyncPointy of a
method’s bytecodeir{str) where a barrier must be inserted. When analyzing a method,
the algorithm maintains a list of the spawnable variablet their associated state per



block, which in turn maintain a private hashing structurat timaps a variable with its

current state. Possible states are SAFE (up to the curniation the variable is safe to
use, this is, a synchronization point is not needed) and URES@insafe to use; a barrier
from where the variable is defined is needed). The algorittkeg into account the scope
at which spawnable variables are defined and used, this &ytd@ somputes the state of
each variable according to the state it has within the (Scopée of the tree where the
variable is read and the state of the same variable withimtizestors of that node. As
the reader can see, the algorithm is based on several impbekper functions, whose

purpose is described below:

deriveBlockTree(instr) Builds the blocks tree corresponding to the input bytecoele i
structions listinstr.

isSpawnableVariable(aninstruction) Checks whether the instructioanlnstruction
has a reference to a local spawnable variable. In such a teseariable code
within the method is returned. Local variables are idertifie Java bytecode as
$i, wherei represents the index of the variable within the method (aernts are
codified in a similar way).

getContainerBlock(aninstruction) Returns the block from the tree where some given
instructionaninstructionbelongs. An instruction always belongs to one block
only, this is, if a parent blocBp has a child bloclBg, the instructions of this latter
do not belong tdp.

beingDefined(varCode)Checks whether a variable (i.e. with codarCod¢ is being
assigned a spawnable call. Actually, in bytecode termsgmisg the result of a
spawnable call to a local variable involves several instons forming a recogniz-
able pattern. Under the currentimplementation of B¥Gir[i] potentially corre-
sponds to the first instruction of such a pattern, thus thistion analyzes whether
the pattern occurs by also taking into account the subseéduatructions.

beingUsed(varCode)Analogous tobeingDefined, but checks whether the current in-
struction reads a spawnable variable. Here, the bytecdtirpassociated to us-
ing a variable is easier to recognize than the one assodmtizfining a variable.

getFirstState(varCode,block) Traverses the block tree upwards starting from a given
blocklooking for the occurrence of a variablarCodein any of the hashing struc-
tures of these blocks. When the variable is first found, thetion returns the state
it has in the block it was encountered.

syncVariablesInBlock(block) Sets to SAFE the state of all spawnable variables con-
tained inblock (encountered up to the current analyzed bytecode insbnjcts
well as the ancestors #llock The resulting pairs <varCode,SAFE> are just put
into the hashing structure associatedlock

desyncVariableUpToRoot(varCode,block)Sets the state of a specific variable to UN-
SAFE from a given block up to the root block. This means thatwariable be-
comes UNSAFE iblockas well as all its ancestor blocks.
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Algorithm 1 Identification of synchronization points

1: procedure IDENTIFY SYNCPOINTS(instr) > Receives bytecode instructions
2: tree« DERIVEBLOCKTREE(instr)
3 syncPoints— CREATEEMPTYLIST > List of synchronization points
4 for i < 1,LENGTH(instr) do
5: if varCode— 1ISSPAWNABLEVARIABLE (instr[i]) then
6: actualBlock— GETCONTAINERBLOCK(tree,instr[i)
7 if BEINGUSED(varCode,instr[i] = true then
8: if GETFIRSTSTATE(varCode,actualBlock= UNSAFEthen
9 SYNCVARIABLESINBLOCK(actualBlock
10: ADDELEMENT(syncPointsinstr|i])
11 else
12: DONOTHING
13: end if
14: else ifBEINGDEFINED(varCode,instr[i] then
15: DESYNCVARIABLE UPTORoOT(varCodeactualBlock
16: end if
17: end if
18: end for
19: return syncPoints

20: end procedure

To better illustrate how the algorithm works, let us applyit a simple recursive
method whose code is shown below. Basically, the methodhgmbne non-spawnable
variable and two different spawnable variables. For coiarese, the points in which
synchronization barriers are needed have been expliodligated in the code. Figure 6
depicts the state of these spawnable variables within teswof the corresponding block
tree as the analysis progresses. Finally, for simplicigy,will perform the analysis not
on the bytecode of the method but on its source code.

public String spawnableMethodi6t a) { // Block 1
String nonSpawnableVar = "not a spawnable variable";
String spawnableVarA = spawnableMethod (a/2);
if (InonSpawnableVar.equals ("some string")) A/ Block 1.1
String spawnablevVarB = spawnableMethod (a/3);
if (a>0){// Block 1.1.1

/1 A call to sync() should be placed here
System .out. println (spawnableVarB);
spawnableVarA = spawnableMethod (a/2);
}
}

if (nonSpawnableVar.equals ("some other string"))/{ Block 1.2

/! Another call to sync() should be placed here
System . out. printin (spawnableVarA);

}



{<spawnableVarA,UNSAFE>,
@pawnableVarA,UNSAFE>}| @spawnableVarB,UNSAFE>}
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syncPoints=[] syncPoints=[]
(@ (b)

{<spawnableVarA,UNSAFE>, {<spawnableVarA,UNSAFE>,

1 |<spawnableVarB,UNSAFE>} 1 |<spawnableVarB,UNSAFE>}
1.1 1.1 |{<spawnableVarA,UNSAFE>,
|(Spawnab'evarB'<UNSAFE>)| <spawnableVarB,UNSAFE>}

{<spawnableVarA,SAFE>, {<spawnableVarA,UNSAFE>,
1.1.1 <spawnableVarB,SAFE>} 1.1.1 <spawnableVarB,SAFE>}
syncPoints=[line 9] syncPoints=[line 9]
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1 |<spawnableVarB,UNSAFE>}

1.1 |{<spawnableVarA UNSAFE>, 1.2 |{<spawnableVarA,SAFE>,
<spawnableVarB,UNSAFE>} <spawnableVarB,SAFE>}

{<spawnableVarA,UNSAFE>,
1.1.1 <spawnableVarB,SAFE>}

syncPoints=[line 9, line 16]
(e)

Figure 6. Block trees of the example method in the different steps eftlgorithm

The algorithm iterates the instructions of the method ugrte B, where a refer-
ence tospawnableVarA is found. As the variable is being defined, it becomes UNSAFE
in the current (root) block (see Figure 6 (a)). At line 5, #pawnableVarB is defined
within block 1.1, which makes the variable UNSAFE in blocks &s well as its ancestor
block 1 (see Figure 6 (b)). At line @pawnablevarB is used within block 1.1.1. Its first
occurrence is encountered in the parent of block 1.1.1 asARES Consequently, all
spawnable variables in the current block’s hash table (nas&vell as the ones encoun-
tered on the ancestors of block 1.1.1 (spawnableVarA andspawnableVvarB) are set
to SAFE in block 1.1.1, and a barrier is scheduled for ineartt line 9 (Figure 6 (c)).



Moreover, at line 10 another definition epawnableVarA is found, which makes the
variable UNSAFE in blocks 1.1.1, 1.1 and 1 (Figure 6 (d)). Tdst relevant line is 16,
in which spawnableVarA is being used in block 1.2. According to its parent block &, th
first state of this variable is UNSAFE. This causes the atforito set to SAFE all vari-
ables found in the variable maps of blocks 1.2 and 1, and tedsdb another barrier for
line 16 (Figure 6 (e)).

For space reasons, there are many aspects regarding gtiimszof the algorithm
which are not covered here. Once the input bytecode has logter darriers at the ob-
tained synchronization pointsyncPointyidentified by the algorithm and instrumented
with the Satin class rewriting tools, the bytecode is reamtyeixecution on Satin. Put
differently, inserting calls teync at these points guarantees the operational semantics of
Satin. The next subsection describes the server-side gupgenl to execute such a code.

3.1.3. The Satin server

Deploying and running a pure Satin application requiregtoyoout a number of manual
configuration steps. First, the application bytecode hagtoopied to the Grid hosts that
will participate in the execution of the application. Sedpeach node must be explicitly
assigned a numeric global identifier, the unique identifiethe application, and the
address and port of the so-calledmeserverwhich is usually one of these machines.
Nameservers provide runtime information about a particula, such as determining
the applications that are being executed, finding hostscfyzating in a run, providing
address and port information, and so on. Finally, the apptin must be launched by
manually initiating it in every host. Then, hosts coordstitemselves to cooperatively
execute the Satin application.

However, this mechanism is literally too manual, as it dedsamsers to be exces-
sively involved in the deployment, configuration and evemekecution of applications.
Besides, the mechanism is inflexible, since the applicatame that is executed on the
Satin platform is determined statically. After launchiagplications execute their asso-
ciated main method that invokes the actual divide and cargpmvnable code, and then
die. In consequence, it is not possible to dynamically patame Satin with the code to
be executed.

To allow Satin connectors to take advantage of the execstovices of the Satin
platform under a client-server scheme, we developed a Satirer component, which
is materialized as a pure Satin application —this is, coamplto the Satin application
structure— that is able to execute other Satin applicatiér8atin networks statically
established by simultaneously configuring and starting3&tn server on one or more
hosts, which ensures that the Satin runtime is up and walitinjmcoming application
execution requests at any time. A network is identified bypibie on which it listens for
requests. A request comprises three elements: a methatsigninvocation arguments,
and a target Java object that represents an instance oftiheaplication on which the
method must be executed. Instances of these Java objeqtseaisely the spawnable
objects that are created from the process explained in thaéqus subsection. The Satin
connector interacts with a Satin server to send a spawndletdfor execution to a
Satin network and wait for the results. Prior to this, theretor communicates with
the Host Information Server (HIS) to distribute the appima bytecode as well as the
necessary third-party libraries from the client node to hiosts of the corresponding
Satin network. Basically, the HIS is a centralized compatiget maintains information
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Figure 7. Execution of divide and conquer methods as Satin applitsitio

about the nodes of a Satin network (address, ports, etc.pavides transparent code
transfer capabilities.

Figure 7 shows some of the components that are involved iexkeution of the
divide and conqueiib operation discussed earlier in this section. For simpligie have
omitted the interaction with the HIS. When the operationris fnvoked, BYG dynami-
cally creates an instance of a Satin application based obytieeode of the component
implementing the method-{bonacci). The resulting spawnable object and the informa-
tion for executindfib (i.e. method signature and arguments) is sent to a Satinonietw
whose parameters are obtained via configuration. Evegful# computation finishes
and the Satin server delivers the result back to the conneetich in turn passes it to
the ordinary component.

The BYG runtime is statically supplied with the address & 8atin node that is
contacted by connectors to run spawnable objects, and #odisgport €xecPort where
the Satin server application running in that network ielighg. Basically, the entry point
to a Satin network is the server instance listeninghameserver:execPort. Moreover,
several logical Satin networks can be established on tomohaber of physical nodes.
This is, an individual host can belong to one or more Satiwagks, playing the role of
either a slave or a master (i.e. nameserver) machine witkimgde network. These kind
of networks are useful for administration purposes, sudbgisally arranging machines
with similar processing capabilities or operating syst@ime parameters that must be
supplied to configure a host as a node of a Satin network al®thddress and the port
to which the network’s nameserver is bound. Figure 8 exdiaplihis support.

As depicted, a simple Grid composed of two Satin netwa@Kwith hostsH;, Hz
andHz) andB (with hostsHz andH,4) have been configured. The Satin nameservéy of
andB are host$1; andHg, respectively. In consequence, two instances of the Saties
will be run, waiting for incoming execution requests dn: 10000 andH, : 10000. In
this way, spawns generated by applications received thrthegformer/latter entry point
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Figure 8. Satin connectors and Satin networks

will be executed on the machines of the Satin netwdk By default, Satin connectors
send all execution requests to a specific Satin entry pbint (0000 in our example),

butitis also possible to override this information by dhigrthe XML file that configures

the Satin connectors for an application.

4. Experimental results

This section presents some experiments that were carrigd puovide evidence about
the practical soundness of BYG. The goal of the experimeatste quantify the perfor-
mance benefits and potential overheads associated to empBY G when exploiting
existing middleware-level execution services. To this,emelcompared the performance
in terms of execution time of using Satin versus BY G/Satinretors by running some
classic divide and conquer applications. When using odr te®also analyzed the time
taken to carry out the corresponding administrative tasksrie actually executing the di-
vide and conquer codes, nhamely, instrumenting and therirsgtite gridified bytecodes
to the hosts participating in the experiments.

The evaluation involved the execution of seven differeqiiaations: prime factor-
ization (PF), the set covering problentp\), fast Fourier transfornHFT), the knapsack
problem KS), Fibonacci seriesHb), matrix multiplication MM) and adaptive numeri-
cal integration Ad). To this end, we set up a cluster composed of 8 machines ctethe
through a 100 Mpbs LAN. Table 2 shows the characteristicek®htachines of our ex-
perimental setting. To run the applications, we used JDKdbSatin 2.1. We chose appli-
cation parameters that produced moderately long-runrongpatations. All tests asso-
ciated to the BYG variants of the applications were laundhath machine E. The HIS
was run on machine H. Figure 9 (a) depicts the overall avesageution time for 25 runs
of these applications. As a complement, Figure 9 (b) congpéd® portion of the time



Table 2. Hardware/software specification of the machines of our exmntal testbed

Machine CPU Memory (MB)  Operating system
A Intel(R) Pentium(R) 4 2.00 GHz. 1.024 Ubuntu Linux 7.04
B Intel(R) Celeron(R) 2.40 GHz. 1.024 Mandriva Linux 2007.0
C Intel(R) Celeron(R) 2.40 GHz. 1.024 Mandriva Linux 2007.0
D Intel(R) Pentium(R) 4 2.80 GHz. 768 Mandriva Linux 2007.0
E Intel(R) Pentium(R) 4 2.80 GHz. 1.024 Mandriva Linux 2@D7.
F Intel(R) Pentium(R) 4 2.80 GHz. 768 Mandriva Linux 2007.0
G Intel(R) Xeon(TM) Dual Core 2.66 1.024 CentOS 4.2

GHz.
H Pentium Il (Coppermine) 852 Mhz. 256 Red Hat Linux 9

Average execution time (minutes)
(less is better)

Average execution time (minutes)
(less is better)

PF Cov FFT Fib KS MM Ad PF Cov FFT Fib KS MM Ad
Application Application

(a) Overall execution time (b) Execution time within the Satin runtime

Figure 9. Test applications: performance results

spent by BYG applications executing under Satin (i.e. withie Satin network) versus
the time it took to run these applications natively with 8alih all cases, deviations were
below 7%. Despite being an acceptable noise level when Empeting on wide area
Grids, note that this percentage is rather high for a LANedaguster. The cause of this
effect is that Satin —and therefore our Satin connectoreg@n a task scheduler that is
based on a set @andomtask stealing algorithms [31]. All in all, except fBFT andAd,
BYG did not performed much worse than Satin, even when BY G adsbftware layer
on top of Satin.

The ordinary version of the applications were implemented hootstrap class that
invoked the actual CPU-intensive computation, which wagd@mented by another class.
In particular, the bootstrap classieFT passed as an argument to the main computation
a very large array of data. Consequently, upon gridificatsemding the computation
for execution to a Satin network required to send this dataels which resulted in a
significant performance overhead. In contrast, in Sak, the invocation was far more
cheaper as it is performed locally. In a broad sense, theecaluthis problem is that
distributing the components of the application among diffie machines and therefore
different address spaces can potentially cause the itilemabetween these components
to become much more expensive.



To mitigate this problem, a mechanism for deciding whethisréonvenient to sub-
mit an operation for execution by means of its associated@ctor or not could be em-
ployed. For instance, we could provide a programmatic a-hased support to allow
developers to express heuristics to indicate the cases ichvghidifying an operation
may be beneficial (e.g. when the size of the arguments is bedowe threshold). In ad-
dition, complex heuristics for automatically computing hotential gains of gridifying
code could be incorporated, for example by taking into anteavironmental conditions
and using user-provided performance models.

From Figure 9 (b) it can be seen that for all the test appticatBY G introduced per-
formance gains (of up to 21% for the casewil) with respect to Satin. Similar effects
were observed when experimenting with our Satin server ahdorks in Internet-wide
Grids [20]. This fact may result confusing since the BYG cector used in the experi-
ments employs Satin as the underlying support for applinagkecution, but by adding
technological noise such as custom Java streams and cliesdioa, which intuitively
should translate into performance overhead. However, ytecbde that is interpreted
by the Satin runtime in either cases is subject to differgatation conditions. On one
hand, when running a pure Satin application, the Satinmemperforms a handshaking
process among its hosts to start and cooperatively exdogit@aplication. On the other
hand, when employing our Satin connectors, the Satin-edatgrsion of the application
being executed is sent by BYG to an already deployed Satimanket which is running
a pure Satin application that is able to execute other Spplications.

With respect téAd, the source of overhead was in the time it took to executerits-G
enabled bytecode under Satin (see Figure 9 (b)). As mertioreection 3.1, at present,
our bytecode analysis techniques and our barrier insestibame present certain limita-
tions that will be addressed in future implementations of8Particularly, the bytecode
rewriting process of BYG may cause applications to have nSatn sync primitives
than needed, which harms the performance of applicatiotiseasost of invoking this
primitive is rather high. This may also reveal a limitatiohtlee implementation of the
Satinsync primitive, which is somewhat expensive and does not congidecase when
it is unintentionally called by a programmer more than orféeraoing spawns.

Figure 10 shows the averagedificationtime (25 executions), which includes (a)
the time it took to analyze and instrument the ordinary bytiedn order to inject middle-
ware bridging instructions and synchronization barriéisythe time it took to the Satin
compiler to instrument the bytecode resulting from the jnes step, and (c) the time it
took to build and transfer the application jar files to the hiaes involved in the compu-
tations. The file sizes were approximately 14.3 K-}, 21 KB (Cov), 19.1 KB FFT),
12.6 KB (Fib), 21.4 KB (K9), 20.6 KB (MM) and 15.2 KB Ad). In all cases, gridification
time was around 3 seconds. It can be observed that (a) re@laiest constant, which
shows that the performance of the bytecode instrumenttg@miques of BYG, at least
for these applications, was not affected by the size (in remobbytecode instructions)
of the class methods that were configured to be passed onitov&atonnectors. On
the other hand, as depicted in the figure, the time requirettidyBatin compiler to in-
strument the applications appears to be slightly more tfteloy the binary size of those
methods, since this compiler performs an analysis over tttieeeclass being gridified.
When building a pure Satin application, this overhead ispmesent since compilation
is performed offline. However, the programmer must manuali{d its application with
Satin. Finally, since the experiments were run on a LAN, theetrequired to transfer
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Figure 10. Test applications: bytecode instrumentation and transfer

these files were negligible. Again, this overhead is notgmes Satin, as it does not
support automatic transfer of classes to the Grid hostsetkedtute an application. To
alleviate the negative effects that would result from emiplg our bytecode transfer
mechanism in wide-area networks, a file caching techniquildme used.

5. Conclusions and future work

We have presented BYG, a new approach to simplify the exatuwofi conventional ap-
plications on Grids. Essentially, the goal of BYG is to levelepers to gridify the binary
code of existing applications and at the same to select wiiictions of the compiled
code should run on a Grid and what execution service shoulseé in each case. The
materialization of the approach is oriented towards gyidi component-based applica-
tions implemented in Java. As a consequence, we can redgengkct that the tool will
benefit a large number of today’s applications.

Experimental results suggest that employing BYG does nphyjimesigning perfor-
mance. In contrast, BYG produces Grid-enabled bytecodemeefficiently exploit ex-
isting Grid executions services. Particularly, we evaddadur tool by running a number
of CPU-intensive applications through Satin connectodsgaure Satin, and most of the
BYG versions performed in a very competitive way with reggecSatin. We believe
this is an interesting result considering that the onlysdhlat are necessary to gridify an
application is to edit a configuration file and to specify a JdMument. However, de-
spite these encouraging results, we are planning to comauret experiments with other
applications and realistic Grid settings.

Itis worth emphasizing that, although the experiments eted Satin and BYG as
competitors, both tools are in some respect complemerBasically, BYG promotes
separation between application logic and the Grid senticasare used to execute its
associated code. Moreover, these services are providediftyng Grid middlewares.
Thus, BYG represents an alternative method for gridifyiimpby codes rather than a



Grid execution servicper se In fact, BYG is currently able to leverage the execution and
parallelization services of the Satin platform. Besides,are working on incorporating
more connectors to supply developers with a richer cataldgrinl execution services.
For example, we are developing a Condor connector that sdharis a Java interface to
Condor clusters

We are extending our work in several directions. First, weaatdressing the limita-

tions of the implementation of the Satin connector, thiséspgnizing more high-level
Java sentences (e.qg. try/catch), refining the algorithrm&arting Satin synchronization
barriers, and so on. Second, as mentioned above, we areniaplimg connectors for
more Grid middlewares. Finally, we are working on incorgimigia programmatic or
rule-based support to allow developers to specify the setle that govern gridifica-
tion, this is, deciding at runtime whether to run ordinarynpmnents via Grid services
or execute them unmodified instead.
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