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Abstract. Grid technologies allow developers to run applications with enormous
demands for resources such as processing power, data and network bandwidth.
However, exploiting Grid resources demands developers to Grid-aware their ap-
plications by explicitly accessing the services of specificGrid middlewares, which
involves more development effort and requires expertise onGrid programming.
A number of recent research efforts known asgridification methodsaim to avoid
these problems by semi-automatically deriving the Grid-enabled version of an ap-
plication based on either its source code or binary code. Most of the approaches
belonging to the second group produce coarse-grained Grid applications that pre-
vent programmers from employing tuning mechanisms such as parallelism and dis-
tribution, and are rather inflexible, since they were not designed to reuse existing
Grid middleware services. We present BYG (BYtecode Gridifier), a new gridifi-
cation method that allow developers to easily gridify binary Java applications and
solves these issues. The paper describes the prototype implementation of BYG and
some experiments showing the feasibility of the approach. Experiments show that
BYG can be used to transparently gridify and efficiently execute a broad range of
resource-intensive applications.
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Introduction

Grid Computing is a paradigm for distributed computing based on arranging geographi-
cally dispersed computational resources to execute resource-intensive applications [11].
Typically, Grid applications are intended to solve scientific or engineering problems that
require by nature huge amounts of computational resources such as CPU cycles, mem-
ory, network bandwidth, data and services. Examples of suchapplications include pro-
tein folding, financial modeling, aerodynamic design and weather simulation. Just like an
electrical power grid, computational Grids are pervasive computing environments whose
goal is to provide coordinated resource sharing across different administrative domains
to meet complex user demands [13].

1Corresponding author. E-mail: cmateos2006@gmail.com.
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Figure 1. Gridifying applications: a simple taxonomy

Looking back into the history, the first attempts to establish Grids were focused on
creating infrastructures to support CPU-intensive, large-scale applications by linking su-
percomputers [14]. With the inception of Internet standards in the 1990s, Internet-wide
Grids became a reality. Consequently, applications that leveraged idle processors of thou-
sands of Internet-connected PCs begun came into existence.A representative example
is SETI@home [3], a desktop application by which users have their PCs process radio
signals from the outer space, helping in a global search for extraterrestrial life. Similar
initiatives are Folding@Home and Genome@Home [17].

Few years later, after the introduction of this form of public computing, the first
Grid middlewares appeared. Examples of popular middlewares for Grid development are
Globus [12], Legion [24], Condor [29] and UNICORE [10]. Roughly, the goal of these
technologies is to virtualize the various resources of a Grid by means ofservices(e.g.
job scheduling, load balancing, brokering, monitoring, data movement, security, etc.),
and also to supply developers with rich APIs for using these services. Essentially, Grid
middlewares sit in the middle between applications and Gridinfrastructures by adding a
software layer comprising specialized services that provide vast execution capabilities.

Besides producing more and better Grid services to applications, recent research in
Grid middlewares has put emphasis on theconsumabilityof the delivered services [21].
Concretely, researchers have been trying to exploit middlewares by providing program-
ing tools, frameworks and libraries that simplify the consumption of their services from
within user applications. The ultimate goal of these technologies is to come out with
facilities to allow Grid application developers to benefit from middleware services with
little if any implementation and configuration effort.

Works in this line of research can be grouped into programming toolkits and gridifi-
cation methods [21] (see Figure 1). The idea behind programming toolkits is to provide
programming APIs and constructs that abstract away the necessary details to interact
with Grid middleware services [30,2,25,6]. By using these tools, Grid programming can
be done at a higher level of abstraction, so that less effort and time is required when em-
ploying Grid toolkits versus directly using middleware APIs . However, as Grid toolkits
are in essence programming facilities, they usually assumethat developers have a solid
knowledge both on Grid programming and the features offeredby the particular toolkit
being used.

Alternatively, the goal of gridification methods is to allowdevelopers to incorporate
or to “inject” Grid services into existing applications with little effort. In other words,
these methods focus on semi-automatically (ideally, automatically) transforming exist-
ing codes to run on a Grid rather than programming Grid applications from scratch.
Therefore, they are mainly intended to support users havinglittle or even no background



on Grid technologies. Furthermore, gridification methods can accept as input either the
source code of ordinary applications [4,31,22] or their compiled versions [9,15,23]. Intu-
itively, the first approach allows developers to have more control over the internal struc-
ture of their applications, thus very efficient Grid applications can be built. Nevertheless,
the second approach allows to gridify applications even when their source code is not
available, removing the need for the tedious code-compile-deploy sequence when build-
ing Grid applications. In this way, gridifying an application just involves submitting it
“as is” for execution on a Grid platform.

One major problem of the current techniques for gridifying binary code is that they
usually prevent the usage of tuning mechanisms suitable forexploiting Grids. After
gridification, applications are essentially coarse grained, monolithic Grid-enabled codes
whose structure cannot be altered to make better use of Grid resources. Specifically, most
of these approaches do not prescribe mechanisms for distributing or parallelizing indi-
vidual parts of an application. To sum up, although they greatly simplify gridification,
employing these approaches may potentially lead to a poor usage of Grid resources. This
represents a trade-off between ease of gridification versusflexibility to configure the run-
time aspects of gridified applications [21]. As a consequence, there is a need for alter-
native gridification methods that provide a convenient balance between the effort devel-
opers have to invest when deploying and running legacy codeson a Grid and thegridifi-
cation granularity, the size of gridified applications from a runtime perspective [21] and
therefore the levels at which their components can be tuned.

We propose a new gridification method for Java applications called BYG (BYte-
code Gridifier), whose utmost goal is to offer an alternativemechanism for effortlessly
Grid-enabling binary codes at various granularity levels.Users indicate, via a configura-
tion file, the portions of their applications that are subject to execution on Grid middle-
wares. Moreover, BYG does not reinvent the wheel by providing yet another Grid job
submission system, but offers a glue between conventional binary Java applications and
the execution services of existing platforms (e.g. Condor,Globus, etc.). Basically, BYG
works by dynamically instrumenting the ordinary bytecode to be compliant with the ap-
plication anatomy prescribed by the target middleware. Experiments show that BYG en-
ables for easy and fine-grained gridification for a wide rangeof CPU-intensive applica-
tions, and effectively leverages existing Grid execution services while not incurring in
much performance overheads compared to directly employingthese services to gridify
applications.

The rest of the paper is organized as follows. The next section discusses related
works, and explains how the BYG approach improves over them.Section 2 overviews
the BYG approach. Later, Section 3 describes its design and implementation. After that,
Section 4 reports an experimental evaluation of BYG. Finally, Section 5 concludes the
paper.

1. Related work

To date, several approaches for gridifying software have been proposed in the literature.
It is worth noting that the approaches that accept as input source codes are out of the
scope of this paper (see [21] for a detailed discussion on them), but we will focus on
approaches aimed at gridifying binary codes. Table 1 summarizes these efforts.



Table 1. Existing approaches for gridifying binary codes

Tool Binary code flavor Gridification
granularity

Exploitation of other
Grid platforms

GEMLCA Machine-dependent Coarse-grained Partially (onlyGlobus)

GridSAM Machine-dependent Coarse-grained Yes

Laskowsky et al. Machine-independent
(bytecode)

Fine-grained
(thread level)

No (runs on plain JVM
clusters)

LGF Machine-dependent Fine-grained,
coarse-grained

No (uses custom RMS)

ProActive Machine-independent
(bytecode)

Coarse-grained Yes

Satin Machine-independent
(bytecode)

Fine-grained Partially (uses custom
RMS; some integration
with Globus)

Volta Machine-independent
(CIL)

Fine-grained No (uses custom RMS)

XCAT Machine-dependent Coarse-grained Yes

GEMLCA [9] lets users to deploy a legacy program as an OGSA-compliant service.
The access point for a client to GEMLCA is a front-end offering operations for gridi-
fying legacy codes, and also for invoking and checking the status of deployed Grid ser-
vices. To execute the gridified codes, GEMLCA uses the Globus’ GRAM job submis-
sion service. The user is responsible for specifying metadata information (parameters,
executable path, etc.) and resource requirements (processors, memory, etc.) for its appli-
cation in an XML configuration file. GEMLCA relies on a very nongranular execution
scheme for these services (i.e. running the same binary codeon one or more processors)
but no internal changes are made in the gridified applications. Then, parallelism and dis-
tribution of individual portions of the application cannotbe controlled in a fine-grained
manner.

GridSAM [23] allows users to publish legacy applications asWeb Services. Grid-
SAM then treats these services as a number of separate components, which can be com-
posed via a workflow description document that is processed and executed according to
resource requirements on top of other Grid platforms. Unlike the aforementioned tools,
GridSAM does not in itself provide the functionality of a Resource Management System
(RMS), but instead acts as a common interface to existing Grid job execution services.
The same principle is followed by [1], but it is even more focused on integrating different
Grid job submission and storage services rather than facilitating the construction of Grid
applications.

XCAT [15] supports distributed execution of component-based applications on top
of existing Grid platforms (preferably Globus), linking components to concrete platform-
level execution services. In addition, application components can also represent legacy
binary programs. XCAT allows developers to build complex applications by program-
matically assembling service components and legacy components. Though this task can
be carried out with little coding effort, it still requires programming and therefore re-
quires knowledge on the XCAT API. As both GridSAM and XCAT treats input legacy
codes as black boxes, these tools share some of the limitations of GEMLCA with respect
to granularity of gridified applications. Finally, LGF [5] is an execution and monitoring
framework that allows users to deploy legacy applications as Web Services. Central to



its design is a two-layered architecture in which the adaptation service layer is heavily
decoupled from the legacy back end layer. With LGF, it is possible to monitor the perfor-
mance of gridified applications at the service, legacy application and code region level.
However, the framework is not designed to take advantage of existing Grid execution
services such as those provided by Condor and Globus.

With respect to tools that gridify machine-independent binary codes, [18] proposes
a method for transparent execution of multi-threaded Java applications on clusters of
JVMs deployed on desktop Grids. First, the tool derives graphs from the compiled byte-
code of an application by using representative sets of inputdata. Roughly, the graphs
account for data and control dependencies within the application. Then, a scheduling
heuristic is applied to place certain mutually exclusive execution paths extracted from
the graphs among the nodes of a JVM cluster. In opposition, BYG aims to gridify single-
threaded Java applications by leveraging existing execution services suitable for exploit-
ing Internet-wide Grids. ProActive [4] is another Java platform for parallel distributed
computing that providestechnical services, a flexible support that allow developers to
address non-functional concerns (e.g. load balancing and fault tolerance) by plugging ex-
ternal configuration to applications at deployment time. ProActive allows users to deploy
ordinary classes as mobile entities on a Grid without code modification by exposing their
operations through a number of protocols (RMI, Web Services, etc.). ProActive features
integration with a wide variety of Grid schedulers. Unfortunately, creating computations
based on a subset of the methods of an ordinary class unavoidably requires to manually
use the ProActive API within the source code of the input application.

In addition, there are other tools that follow ahybrid approach to gridification of
binary codes, in which developers are actively involved in the process of altering an ap-
plication to gridify it. Satin [31] is a Java framework for gridifying and parallelizing di-
vide and conquer applications. The user is responsible for indicating the points in the
application code in which a fork (i.e. a recursive call that is to be handled in parallel)
or a join (i.e. to wait for child computations) should take place. Then, Satin instruments
the compiled code so as to transparently handle the execution of parallel tasks in a Grid.
Similarly, Volta [19] recompiles executables .NET applications on the basis of declara-
tive developer annotations, inserting remoting and synchronization primitives to trans-
parently transform applications into a distributed form. As recompiling operates at the
CIL (.NET Common Intermediate Language) level, Volta is compatible with a broad va-
riety of .NET programming languages. However, the weak point of these tools is that they
require modifications to the source code of applications prior to actually Grid-enabling
their compiled counterpart.

While the above approaches are targeted at supporting userswith little knowledge
and expertise on Grid technologies, some of them (Satin, Volta) are some way off
from being true binary code gridifiers, as they require code modifications on the input
applications. Furthermore, some of the approaches (GEMLCA, GridSAM, ProActive,
XCAT) offer a poor balance to the “ease of gridification versus tunability” trade-off,
since they completely avoid the requirement of code modification, but gridification re-
sults in coarse-grained Grid applications that cannot be modified for reconfiguration or
paralellization purposes. Finally, only a small number of the analyzed approaches are de-
signed to exploit the execution services of other Grid platforms. However, a recent trend
in Grid Computing, as evidenced by broadly adopted Grid standards such as OGSA and
WSRF [8], is to promote interoperability and therefore integration among Grid tools and



middlewares. In this sense, Grid middleware integration israpidly becoming the rule and
not the exception.

2. BYG

To address the above problems, we propose BYG (Bytecode Gridifier), a new gridifi-
cation method that aims at dealing with the above trade-off by letting developers to in-
troduce tuning into their applications with little effort,and minimizing the configuration
and deployment effort that is necessary to put a Grid application to work. Furthermore,
the approach offers mechanisms to easily produce efficient Grid-aware applications, but
it does not seek to provide yet another runtime system or middleware for supporting ap-
plication execution. Instead, our research aims at leveraging the services of existing Grid
platforms through the use ofconnectors. Basically, a connector materializes the protocol
to access the various execution services provided by a specific Grid platform. Connec-
tors are non-invasively injected into the application binary code in order to dynamically
delegate the execution of certain parts of the application to a Grid platform. In addition,
connectors are responsible for transparently adapting thebinary codes to take advantage
of the API library provided by the target platform. Roughly,the mapping of which parts
of an application whose execution is delegated to particular Grid services is specified by
means of user-supplied configuration external to the application.

BYG specifically targets component-based applications implemented in Java. On
one hand, we chose Java as it is broadly adopted by developers. Besides, the JDK pro-
vides many features and libraries that facilitate the construction of distributed execution
environments, such as sockets, object serialization, extensible class loading, reflection,
amongst others. On the other hand, component-based programming is commonplace in
Java development, which is evidenced by the high popularityof several component pro-
gramming models such as JavaBeans2, EJB3 and Dependency Injection [16]. For these
two reasons, our tool could benefit a large amount of today’s applications.

Component-based development emphasizes on building applications in which func-
tionality is split into a number of logical components with well-defined interfaces. Every
component is designed to hide their associated implementation, to not share state, and to
communicate with other components via message exchange [27]. In the end, application
components only know each other’s interfaces and are self-contained, which yields as a
result reusable and decoupled building blocks where interfaces are abstracted away from
implementation (i.e. each component is materialized through one or more classes plus
an interface) and any kind of interaction that involves tightly-coupled communication or
state sharing is disallowed, such as invoking component operations by passing arguments
by reference.

Figure 2 depicts an overview of BYG. Conceptually, BYG takesas input the com-
piled version of an ordinary component-based Java application, and dynamically trans-
forms it so as to run some component operations on different Grid middlewares. In this
sense, BYG can be seen both as a competitor of existing approaches and a complement
to them. The developer is responsible for indicating which operations should be handled
by external services, and for each one of them which specific middleware should be used.

2JavaBeanshttp://java.sun.com/javase/technologies/desktop/javabeans/docs/spec.html
3Enterprise JavaBeanshttp://java.sun.com/products/ejb
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The runtime support of BYG is in charge of processing the developer configuration, in-
tercepting all invocations to this kind of operations (in this caseoperation1), and delegat-
ing their execution to the associated target Grid middleware (in this case Condor). Some
evident benefits of this approach are:

Gridification effort Gridification requires less effort. The programmer just specifies
which parts of its application should be executed on a Grid environment, but with-
out explicitly coding the application to do so. Besides, gridification is possible
even when the source code of an application is not available.In addition, the Grid
services associated to an application can be straightforwardly detached by simply
modifying its associated configuration.

Flexibility Depending on the nature of each component operation, a different Grid ex-
ecution service could be used. For example, all invocationson an embarrassingly
parallel operation may be sent to a Grid platform able to execute them concur-
rently, thus improving performance and scalability. Similarly, all mission critical
computations may be submitted to another Grid platform providing fault tolerance
capabilities.

Tunability Unlike related tools, in which applications are mostly executed on a black
box fashion, BYG allows developers to fine-tune the execution of their applica-
tions by submitting calls to component operations in parallel to different Grid mid-
dlewares. More details on this support can be found in Section 3.1.

Service availability The developer is asked to specify which Grid execution service
should be employed to execute a component operation. However, at the time of ex-
ecuting the application, the service might not be available(e.g. the Condor cluster
that was supposed to run the application is temporarily down). Then, BYG could
choose an alternative service to still allow the user to run the application.

BYG does not aim to automatically gridify any kind of application and exploit any kind
of Grid middleware. First, our approach is specifically designed to gridify component-
based applications written in Java. This ensures that application components are heavily



decoupled and do not share state, thus component operationscan be run in a different
memory address space without worrying about which component issued the invocation
or how the operation arguments/results are interchanged. Second, depending on the par-
ticular connectors being used, operations must adhere to certain extra coding conven-
tions. Nevertheless, following good object-oriented practices such as employing proper
method modularization, placing the result of calls on localvariables, and avoiding pa-
rameter passing by reference is usually enough to prepare anapplication to use various
connectors.

We have developed a proof-of-concept implementation of ourapproach, which is
described in Section 3. It is basically implemented by meansof the java.lang.instrument
package of the JDK, which provides facilities for transforming class files at class load
time. Based on this support, the prototype works by instrumenting bytecodes to delegate
the execution of certain component operations to external Grid execution services, this
is, offered by existing Grid middlewares. BYG-enabling an already compiled application
only requires the user to (a) configure an XML file4 that instructs BYG how to map com-
ponent operations to Grid execution services, and (b) add a JVM argument to the boot-
strap script that initiates the user application. The implementation of this prototype as
well as the applications used in the experiments described later in this paper are available
upon request.

At present, our tool provides a connector for accessing the services of the Satin
platform [31], which provides support for executing and parallelizing divide and con-
quer Java computations on LANs and WANs. Basically, this connector automatically
generates a Satin application based on the bytecode of an ordinary application compo-
nent. Furthermore, the development of connectors for Condor and ProActive [4] is un-
derway. This will enable developers to take advantage of useful Grid functionalities not
present in Satin such as monitoring and administrating running computations. This in-
tegration is in principle viable from a technical point of view since ProActive is also
implemented in Java, and there are successful experiences on integrating Java and Con-
dor clusters [28]. It is worth noting that both BYG and its current implementation are
strongly inspired by concepts and ideas derived from previous research in the context of
the JGRIM project [22], a method for Grid-enabling Java source code.

3. Implementation

The first step to put any conventional application to executeon a Grid with BYG is
to create the corresponding XML configuration file. This XML file specifies relevant
parameters that BYG needs to Grid-enable the application, such as the components to be
gridified, and the binding information that depends on the Grid middleware(s) to which
BYG will delegate the execution of these components, namelythe entry point of the
middleware(s) and the job submission protocol used in each case.

A user application may have many parts suitable for execution on a Grid. In this
sense, BYG allows applications to be gridified at a fine-grained level, this is, any com-
ponent operation can be configured by the user to be submittedonto a Grid middleware.
To this end, the user must provide:

4We are currently working on graphical tools to further simplify configuration



1. The list of operations or Java methods (owner class, method name and parameter
types) to be gridified. Roughly, the owner class allows BYG tounambiguously
identify methods with the same signature but implemented bydifferent classes.

2. The connector to be used (and consequently the Grid execution service). As we
suggested in the previous section, this decision will in general depend on the
nature of the operation being gridified.

3. The job submission protocol over those provided by the connector(s) being em-
ployed. For example, Condor provides a remote job submission mechanism based
on raw sockets, but it also offers a Web Service submission interface. Conse-
quently, the user is responsible for selecting the specific job submission protocol
when more than one choice is offered by the target middleware.

1 < c o n n e c t o r s x m l n s : x s i =" h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema− i n s t a n c e "
2 xs i :noNamespaceSchemaLoca t ion =" b y g C o n f i g u r a t i o n . xsd ">
3 < c o n n e c t o r name=" example ">
4 <midd leware name=" s a t i n ">
5 < p r o p e r t y name=" p r o t o c o l "> raw_socke ts < / p r o p e r t y >
6 < p r o p e r t y name=" h o s t "> 1 9 2 . 1 6 8 . 1 9 . 7 9< / p r o p e r t y >
7 < p r o p e r t y name=" p o r t ">5432< / p r o p e r t y >
8 < / midd leware>
9 < c l a s s e s >

10 < c l a s s name=" F i b o n a c c i ">
11 <methods>
12 <method name=" f i b ">
13 < param ete r t ype =" long " / >
14 < / method>
15 < / methods>
16 < / c l a s s >
17 . . .
18 < / c l a s s e s >
19 < / c o n n e c t o r >
20 . . .
21 < / c o n n e c t o r s >

The above configuration tells BYG to execute via the servicesof the Satin platform
(lines 4-8) a specific method from theFibonacci class (lines 10-16). The name of the
class must be fully-qualified. Of course, it is possible to define more than one connector
within a configuration file, and associate several classes and methods to them. In its
current shape, BYG requires developers to deal with conflicting connectors, this is, to
avoid associating the same class method to more than one connector.

To inject connector code, BYG takes advantage of thejava.lang.instrument package,
a feature starting at Java 5 that defines an API for modifying bytecodes by transforming
their associated class files at load time. The instrumentation package is intended to be
extended through special libraries called Java agents. A Java agent is a pluggable user
library that runs embedded in the JVM and customizes the class loading process. An
agent works in front of the main application method, executes on the same JVM as the
application, is loaded by the same system class loader, and is governed by the same secu-
rity policy and context. Basically, the kernel of the mechanism for dynamically injecting
connectors in BYG is implemented as a Java agent.

Figure 3 illustrates the differences –from a runtime perspective– between executing
an ordinary Java application in the usual way (left) versus executing it by taking advan-
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tage of the BYG agent (right). The agent library is simply a JAR (Java ARchive) file
that contains a special bootstrap class with apremainmethod, which is from where the
class transformations are triggered. This method is invoked by the JVM every time the
application requests to load a class, and its signature is asfollows:

pub l i c s t a t i c vo id premain ( S t r i n g agentArguments ,
j a v a . lang . i n s t r u m e n t . I n s t r u m e n t a t i o n i n s t r ) ;

The first parameter is a string representing the command linearguments passed to
agent, while the second parameter is a Java object maintained by the JVM that provides
services to register/deregister class transformers, obtaining the classes already loaded
into the JVM, etc. Basically, the above method is the hook by which BYG configures
and injects connector code into classes according to the information supplied by the user
in the configuration file. To BYG-enable an application (i.e.to use the BYG agent), the
startup command that executes the main application class must look like:

j a v a − j a v a a g e n t : bygAgent . j a r =< con f ig−f i l e > <Main−Class > . . .

When the user application starts, the agent reads the configuration file and extracts
both the methods to gridify and the connectors to use. Based on this information, the
BYG agent dynamically instruments the bytecodes of the classes owning these methods
as these classes load. Furthermore, instrumenting an individual class method implies:

1. To rewrite its body in order to include the necessary instructions to launch the
execution of its bytecode on a specific Grid middleware. The injected “stub” will
employ the middleware-related information extracted fromthe connector asso-
ciated to the method (i.e. theprotocol, host andport properties) to transparently
send an adapted version of the original method’s body for execution via an exter-
nal Grid service interface every time this method is called by the application. The



stub is created and injected by using Javassist5, a high-level library for modifying
and creating classes and methods at runtime.

2. To adapt its original bytecode to take advantage of the middleware the method
was connected to. In other words, this adaptation involves to prepare the method
as well as the structure of its owner class to the code anatomyprescribed by
the target Grid middleware. For example, some platforms require applications to
extend from middleware-specific API classes, use certain API calls to carry out
object distribution and parallelism, make all objects to beserializables, and so
on.

The transformations described in the above steps strongly depend on the Grid middle-
ware selected for execution. In the next subsection, we focus on explaining these mecha-
nisms in the context of Satin, for which the current version of BYG provides a connector.

3.1. The Satin connector

Satin [31] is a Java framework that lets programmers to easily parallelize divide and con-
quer Java applications. Satin provides two core primitivesto parallelize single-threaded
conventional applications:spawn, to create subcomputations (i.e. divide), andsync, to
block execution until the results of subcomputations are available. Methods considered
for parallel execution are identified by means ofmarker interfacesthat extend thesat-
in.Spawnableinterface. Furthermore, a class containing spawnable methods extends the
satin.SatinObjectclass and implements the corresponding marker interface. In addition,
the result of the invocation to a spawnable method must be stored on a local variable. For
instance, the Satin version of the recursive solution to compute thenth Fibonacci number
would be:

pub l i c i n t e r f a c e IF ibMarker extends s a t i n . Spawnable {
pub l i c long f i b ( long n ) ;

}
pub l i c c l a s s F i b o n a c c i extends s a t i n . S a t i n O b j e c t implements IF ibMarker {

pub l i c long f i b ( long n ) {
i f ( n < 2)

re tu rn n ;
/ / The n e x t two c a l l s are spawned acco rd ing to IF ibMarker
long f1 = f i b ( n − 1 ) ;
long f2 = f i b ( n − 2 ) ;
/ / E xecu t ion suspends u n t i l f 1 and f2 are both i n s t a n t i a t e d
super . sync ( ) ;
re tu rn f1 + f2 ;

}
pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {

. . .
F i b o n a c c i fibComp =new F i b o n a c c i ( ) ;
long r e s u l t = fibComp . f i b ( n ) ;
. . .

}
}

5Javassisthttp://www.csg.is.titech.ac.jp/~chiba/javassist



After specifying spawnable methods and inserting appropriate synchronization calls
into the application source code, the developer must feed a compiled version of the appli-
cation to the Satin compiler that translates, through Java bytecode instrumentation, each
invocation to a spawnable method into a Satin runtime task. For example, from the code
shown above, a task is generated for every single call to thefib method.

The purpose of the Satin connector is to automatically reproduce the above code
structures from the compiled version of the components of anordinary application, this
is, an application which has not been coded to take advantageof the Satin API. The
Satin connector generates the marker interface(s) based onthe contents of the XML file
associated to the application, and rewrites the bytecode ofthe component(s) in order to
extend and implement the required API classes and interfaces. In addition, the connector
automatically inserts proper calls tosync by deriving a high-level representation from
the bytecode and analyzing the points where a barrier must beintroduced. These tasks
are explained in detail in the next subsection. To execute the Satin-enabled version of
components, this connector relies on an extended Satin runtime, which is explained in
subsection 3.1.3.

3.1.1. Client side processing

Besides injecting proper bytecode to transparently execute ordinary methods on Satin,
the Satin connector is responsible for dynamically adapting the bytecodes of both these
methods and the classes owning them to be compliant to the application anatomy de-
scribed in the previous section. Thus, based on a compiled conventional class, the Satin
connector carries out two main tasks:

• Marker interface generation: As explained, Satin requiresthe application to im-
plement a marker interface, which explicitly list the methods that are considered
by Satin for parallel execution. The Satin connector automatically builds this in-
terface from the methods listed in the XML configuration for the class being
connected to the Satin services. For creating the corresponding class file for the
interface, the ASM6 library is employed. Generated interfaces are suffixed with
“_Spawnable”.
• Class generation: Satin requires applications to implement a marker interface as

well as to extend fromSatinObject. In this sense, a clone (from now onpeer) of
the non-gridified class under consideration is created and instrumented to fulfill
these requirements. Again, cloning is performed by using Javassist. Generated
peers are suffixed with “_Peer”.

Figure 4 depicts all the steps performed by the Satin connector to build the Satin-enabled
version of an ordinary class. The connector receives as input from the BYG agent the
ordinary class being gridified (actually, its bytecode) andthe target method(s), and cre-
ates the corresponding marker interface and a Satin peer forit. In a subsequent step,
based on an heuristic algorithm we have specially designed,the connector automatically
inserts calls to thesync primitive at appropriate places of the parallel methods of the
generated peer. This algorithm is explained in the next subsection. Afterwards, the peer
is processed with the bytecode instrumentation tools of theSatin platform. At runtime,
the final peer will be instantiated at the client side by the ordinary application and sub-

6ASM http://asm.objectweb.org



public class Fibonacci {
  public long fib(long n){
    if (n < 2)
      return n;
    long f1 = fib(n − 1);
    long f2 = fib(n − 2);
    return f1 + f2;
  }
  ...
}

Ordinary code

1) Marker
interface
generation

public interface Fibonacci_Spawnable {
  public long fib(long n);
}

2) Class
generation

public class Fibonacci_Peer
  extends SatinObject
  implements Fibonacci_Spawnable {
  public long fib(long n){
    if (n < 2)
      return n;
    long f1 = fib(n − 1);
    long f2 = fib(n − 2);
    return f1 + f2;
  }
  ...
}

Instrumented code (without barriers)

public class Fibonacci_Peer
  extends ... implements ... {
  public long fib(long n){
    if (n < 2)
      return n;
    long f1 = fib(n − 1);
    long f2 = fib(n − 2);
    sync();
    return f1 + f2;
  }
  ...
}

Instrumented code (synchronized)

3) Barrier
insertion

4) Satin instru−
mentation

Satin−enabled
bytecode

Figure 4. The Satin connector: Satin-enabling ordinary bytecode

mitted for execution through our socket-based interface toSatin, which is discussed in
Section 3.1.3.

3.1.2. Barrier insertion

As explained, when programming a conventional Satin application, the results of recur-
sive calls to parallel methods must be placed on local variables. Furthermore, before
reading such variables, the developer is responsible for inserting a call to thesync prim-
itive, which ensures that recursive results are always available before they are accessed.
The step 3 in Figure 4 automatically reproduces this task, this is, the connector analyzes
the bytecode generated at the previous step and then rewrites this bytecode in order to
insert barriers at the right places.

Intuitively, a naive solution to this problem is to blindly place such a barrier right be-
fore any access to a local variable. However, we found that this solution generated more
calls tosync than needed and negatively affected the performance of the resulting peer.
As a consequence, we designed an heuristic that aims at inserting a minimal number of
synchronization barriers and at the same time preserving the semantics of the original
code. The algorithm works by deriving a high-level, ad-hoc representation of the byte-
code instructions to carry out the analysis as much close to the source code of the appli-
cation as possible. This mapping relies on the fact that there is a direct correspondence
between Java source and bytecode [7,26].

Java compiles the source code of methods as a number of labels, each containing a
number of bytecode instructions. Individual labels form disjoint instruction blocks where
local variables are declared, calls to other methods are performed, goto-like directives to
jump to other labels are included, etc. Precisely, the relationships between the different
labels define the behavior in terms of control flow the programwill have at runtime.
Figure 5 exemplifies these notions. The instructions of the source code shown on the left
are compiled into seven labels (center), and gives origin toa block treecomprising three
nodes: one for the whole method, one representing the loop construct, and finally one for
the conditional branch inside the loop. It is worth noting that any node within a block
tree may have more than one child. The root of a block tree always correspond to the



Blocks tree

Method Block (L0−L7)

public boolean evaluate(int a, 
                                       int[] b) {
  for (int i = 0; i < b.length; i++) {
   if (b[i] > a)
    return true;
  }
  ...
  return false;
 }

  public evaluate(I[I)Z
   L0
    LINENUMBER 19 L0
    ICONST_0
    ISTORE 3
   L1
    GOTO L2
   L3
    LINENUMBER 20 L3
    ALOAD 2
    ILOAD 3
    IALOAD
    ILOAD 1
    IF_ICMPLE L4
   L5
    LINENUMBER 21 L5
    ICONST_1
    IRETURN
   L4
    LINENUMBER 19 L4
    IINC 3 1
   L2
    ILOAD 3
    ALOAD 2
    ARRAYLENGTH
    IF_ICMPLT L3
   L6
    LINENUMBER 23 L6
    ICONST_0
    IRETURN
   L7

Java bytecode

Java source code

Decision Block (L3−L5)

Loop Block (L0−L2)
. . .

Figure 5. Deriving a block tree from bytecode

body of a method, whereas the rest of the nodes exclusively depend on the structure of
the sentences within this method.

To derive the block tree of a method, the Satin connector analyzes its bytecode in-
structions sequentially in order to find those that provide information about the higher-
level structure of the program, this is, loops, conditionalbranches, try/catch constructs,
and so on. Specifically, in Java, these instructions are the ones that perform jumps
within a method (IFEQ, IFNE, IFLT, IFGE, IFGT, IFLE, IF_ICMPEQ, IF_ICMPNE,
IF_ICMPLT, IF_ICMPGE, IF_ICMPGT, IF_ICMPLE, IF_ACMPEQ, IF_ACMPNE,
GOTO, JSR, IFNULL, IFNONNULL). As these instructions are spotted, the correspond-
ing block tree is built in such a way each block has a referenceto every single byte-
code instruction it contains, and also a pointer to every block representing immediately
inner scopes. The result of this process is a high-level, object-based view of the byte-
code, which is then used to insert synchronization barriers. Some Java sentences, namely
switch/case and try/catch constructs are still not recognized.

Precisely, the algorithm for inserting barriers works by walking through the instruc-
tions of a method and detecting the points in which a local variable is eitherdefinedor
usedby a sentence. A variable is defined when the result of a spawned computation is as-
signed to it. On the contrary, a local variable is used when its value is read. Since to work
properly Satin allows variables to be read provided async has been previously issued,
our algorithm operates by modifying the bytecode so as to ensure a call tosync is done
between the definition and use of any local variable, for any execution path between these
two points. Moreover, assync suspends execution untilall the subcomputations associ-
ated to defined variables have finished, our algorithm employs the aforementioned tree
structure to as to keep the correctness of the program while minimizing the inserted calls
to sync. Any local variable that does not represent results from parallel computations is
naturally ignored by the algorithm.

Algorithm 1 summarizes the process of identifying the points (syncPoints) of a
method’s bytecode (instr) where a barrier must be inserted. When analyzing a method,
the algorithm maintains a list of the spawnable variables and their associated state per



block, which in turn maintain a private hashing structure that maps a variable with its
current state. Possible states are SAFE (up to the current instruction the variable is safe to
use, this is, a synchronization point is not needed) and UNSAFE (unsafe to use; a barrier
from where the variable is defined is needed). The algorithm takes into account the scope
at which spawnable variables are defined and used, this is to say, it computes the state of
each variable according to the state it has within the (scope) node of the tree where the
variable is read and the state of the same variable within theancestors of that node. As
the reader can see, the algorithm is based on several important helper functions, whose
purpose is described below:

deriveBlockTree(instr) Builds the blocks tree corresponding to the input bytecode in-
structions listinstr.

isSpawnableVariable(anInstruction) Checks whether the instructionanInstruction
has a reference to a local spawnable variable. In such a case,the variable code
within the method is returned. Local variables are identified in Java bytecode as
$i, wherei represents the index of the variable within the method (arguments are
codified in a similar way).

getContainerBlock(anInstruction) Returns the block from the tree where some given
instructionanInstructionbelongs. An instruction always belongs to one block
only, this is, if a parent blockBP has a child blockBc, the instructions of this latter
do not belong toBP.

beingDefined(varCode)Checks whether a variable (i.e. with codevarCode) is being
assigned a spawnable call. Actually, in bytecode terms, assigning the result of a
spawnable call to a local variable involves several instructions forming a recogniz-
able pattern. Under the current implementation of BYG,instr[i] potentially corre-
sponds to the first instruction of such a pattern, thus this function analyzes whether
the pattern occurs by also taking into account the subsequent instructions.

beingUsed(varCode)Analogous tobeingDefined, but checks whether the current in-
struction reads a spawnable variable. Here, the bytecode pattern associated to us-
ing a variable is easier to recognize than the one associatedto defining a variable.

getFirstState(varCode,block)Traverses the block tree upwards starting from a given
blocklooking for the occurrence of a variablevarCodein any of the hashing struc-
tures of these blocks. When the variable is first found, the function returns the state
it has in the block it was encountered.

syncVariablesInBlock(block) Sets to SAFE the state of all spawnable variables con-
tained inblock (encountered up to the current analyzed bytecode instruction) as
well as the ancestors ofblock. The resulting pairs <varCode,SAFE> are just put
into the hashing structure associated toblock.

desyncVariableUpToRoot(varCode,block)Sets the state of a specific variable to UN-
SAFE from a given block up to the root block. This means that the variable be-
comes UNSAFE inblockas well as all its ancestor blocks.



Algorithm 1 Identification of synchronization points
1: procedure IDENTIFYSYNCPOINTS(instr) ⊲ Receives bytecode instructions
2: tree← DERIVEBLOCKTREE(instr)
3: syncPoints← CREATEEMPTYL IST ⊲ List of synchronization points
4: for i← 1,LENGTH(instr) do
5: if varCode← ISSPAWNABLEVARIABLE(instr[i]) then
6: actualBlock← GETCONTAINERBLOCK(tree,instr[i])
7: if BEINGUSED(varCode,instr[i]) = true then
8: if GETFIRSTSTATE(varCode,actualBlock) = UNSAFEthen
9: SYNCVARIABLESINBLOCK(actualBlock)

10: ADDELEMENT(syncPoints, instr[i])
11: else
12: DONOTHING

13: end if
14: else ifBEINGDEFINED(varCode,instr[i]) then
15: DESYNCVARIABLE UPTOROOT(varCode,actualBlock)
16: end if
17: end if
18: end for
19: return syncPoints
20: end procedure

To better illustrate how the algorithm works, let us apply iton a simple recursive
method whose code is shown below. Basically, the method contains one non-spawnable
variable and two different spawnable variables. For convenience, the points in which
synchronization barriers are needed have been explicitly indicated in the code. Figure 6
depicts the state of these spawnable variables within the nodes of the corresponding block
tree as the analysis progresses. Finally, for simplicity, we will perform the analysis not
on the bytecode of the method but on its source code.

1 pub l i c S t r i n g spawnableMethod (i n t a ) { / / B lock 1
2 S t r i n g nonSpawnableVar = " no t a spawnable v a r i a b l e " ;
3 S t r i n g spawnableVarA = spawnableMethod ( a / 2 ) ;
4 i f ( ! nonSpawnableVar . e q u a l s ( " some s t r i n g " ) ) {/ / B lock 1 . 1
5 S t r i n g spawnableVarB = spawnableMethod ( a / 3 ) ;
6 i f ( a > 0) { / / B lock 1 . 1 . 1
7 . . .
8 / / A c a l l t o sync ( ) shou ld be p laced here
9 System . ou t . p r i n t l n ( spawnableVarB ) ;

10 spawnableVarA = spawnableMethod ( a / 2 ) ;
11 }
12 }
13 i f ( nonSpawnableVar . e q u a l s ( " some o t h e r s t r i n g " ) ) {/ / B lock 1 . 2
14 . . .
15 / / Another c a l l t o sync ( ) shou ld be p laced here
16 System . ou t . p r i n t l n ( spawnableVarA ) ;
17 }
18 . . .
19 }
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Figure 6. Block trees of the example method in the different steps of the algorithm

The algorithm iterates the instructions of the method up to line 2, where a refer-
ence tospawnableVarA is found. As the variable is being defined, it becomes UNSAFE
in the current (root) block (see Figure 6 (a)). At line 5, thespawnableVarB is defined
within block 1.1, which makes the variable UNSAFE in blocks 1.1 as well as its ancestor
block 1 (see Figure 6 (b)). At line 9,spawnableVarB is used within block 1.1.1. Its first
occurrence is encountered in the parent of block 1.1.1 as UNSAFE. Consequently, all
spawnable variables in the current block’s hash table (none) as well as the ones encoun-
tered on the ancestors of block 1.1.1 (i.e.spawnableVarA andspawnableVarB) are set
to SAFE in block 1.1.1, and a barrier is scheduled for insertion at line 9 (Figure 6 (c)).



Moreover, at line 10 another definition ofspawnableVarA is found, which makes the
variable UNSAFE in blocks 1.1.1, 1.1 and 1 (Figure 6 (d)). Thelast relevant line is 16,
in which spawnableVarA is being used in block 1.2. According to its parent block 1, the
first state of this variable is UNSAFE. This causes the algorithm to set to SAFE all vari-
ables found in the variable maps of blocks 1.2 and 1, and to schedule another barrier for
line 16 (Figure 6 (e)).

For space reasons, there are many aspects regarding optimizations of the algorithm
which are not covered here. Once the input bytecode has been added barriers at the ob-
tained synchronization points (syncPoints) identified by the algorithm and instrumented
with the Satin class rewriting tools, the bytecode is ready for execution on Satin. Put
differently, inserting calls tosync at these points guarantees the operational semantics of
Satin. The next subsection describes the server-side support used to execute such a code.

3.1.3. The Satin server

Deploying and running a pure Satin application requires to carry out a number of manual
configuration steps. First, the application bytecode has tobe copied to the Grid hosts that
will participate in the execution of the application. Second, each node must be explicitly
assigned a numeric global identifier, the unique identifier of the application, and the
address and port of the so-callednameserver, which is usually one of these machines.
Nameservers provide runtime information about a particular run, such as determining
the applications that are being executed, finding hosts participating in a run, providing
address and port information, and so on. Finally, the application must be launched by
manually initiating it in every host. Then, hosts coordinate themselves to cooperatively
execute the Satin application.

However, this mechanism is literally too manual, as it demands users to be exces-
sively involved in the deployment, configuration and even the execution of applications.
Besides, the mechanism is inflexible, since the applicationcode that is executed on the
Satin platform is determined statically. After launching,applications execute their asso-
ciated main method that invokes the actual divide and conquer spawnable code, and then
die. In consequence, it is not possible to dynamically parametrize Satin with the code to
be executed.

To allow Satin connectors to take advantage of the executionservices of the Satin
platform under a client-server scheme, we developed a Satinserver component, which
is materialized as a pure Satin application –this is, compliant to the Satin application
structure– that is able to execute other Satin applications. A Satin networkis statically
established by simultaneously configuring and starting theSatin server on one or more
hosts, which ensures that the Satin runtime is up and waitingfor incoming application
execution requests at any time. A network is identified by theport on which it listens for
requests. A request comprises three elements: a method signature, invocation arguments,
and a target Java object that represents an instance of the Satin application on which the
method must be executed. Instances of these Java objects areprecisely the spawnable
objects that are created from the process explained in the previous subsection. The Satin
connector interacts with a Satin server to send a spawnable object for execution to a
Satin network and wait for the results. Prior to this, the connector communicates with
the Host Information Server (HIS) to distribute the application bytecode as well as the
necessary third-party libraries from the client node to thehosts of the corresponding
Satin network. Basically, the HIS is a centralized component that maintains information



f:Fibonacci sc:SatinConnector br:BYGRuntime ss:SatinServer

fs:Fibonacci_Spawnable

getSatinNetworkInfo() :SatinEntryPointinvoke(m) :Object

fib(long) :long

execute(m, fs) :Object

Invokes, via Java reflection

the method represented by

"m" on the spawnable object

Figure 7. Execution of divide and conquer methods as Satin applications

about the nodes of a Satin network (address, ports, etc.) andprovides transparent code
transfer capabilities.

Figure 7 shows some of the components that are involved in theexecution of the
divide and conquerfib operation discussed earlier in this section. For simplicity, we have
omitted the interaction with the HIS. When the operation is first invoked, BYG dynami-
cally creates an instance of a Satin application based on thebytecode of the component
implementing the method (Fibonacci). The resulting spawnable object and the informa-
tion for executingfib (i.e. method signature and arguments) is sent to a Satin network,
whose parameters are obtained via configuration. Eventually, the computation finishes
and the Satin server delivers the result back to the connector, which in turn passes it to
the ordinary component.

The BYG runtime is statically supplied with the address of the Satin node that is
contacted by connectors to run spawnable objects, and the specific port (execPort) where
the Satin server application running in that network is listening. Basically, the entry point
to a Satin network is the server instance listening onnameserver:execPort. Moreover,
several logical Satin networks can be established on top of anumber of physical nodes.
This is, an individual host can belong to one or more Satin networks, playing the role of
either a slave or a master (i.e. nameserver) machine within asingle network. These kind
of networks are useful for administration purposes, such aslogically arranging machines
with similar processing capabilities or operating system.The parameters that must be
supplied to configure a host as a node of a Satin network are theIP address and the port
to which the network’s nameserver is bound. Figure 8 exemplifies this support.

As depicted, a simple Grid composed of two Satin networksA (with hostsH1, H2

andH3) andB (with hostsH3 andH4) have been configured. The Satin nameserver ofA
andB are hostsH1 andH4, respectively. In consequence, two instances of the Satin server
will be run, waiting for incoming execution requests onH1 : 10000 andH4 : 10000. In
this way, spawns generated by applications received through the former/latter entry point
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Figure 8. Satin connectors and Satin networks

will be executed on the machines of the Satin networkA/B. By default, Satin connectors
send all execution requests to a specific Satin entry point (H1 : 10000 in our example),
but it is also possible to override this information by altering the XML file that configures
the Satin connectors for an application.

4. Experimental results

This section presents some experiments that were carried out to provide evidence about
the practical soundness of BYG. The goal of the experiments was to quantify the perfor-
mance benefits and potential overheads associated to employing BYG when exploiting
existing middleware-level execution services. To this end, we compared the performance
in terms of execution time of using Satin versus BYG/Satin connectors by running some
classic divide and conquer applications. When using our tool, we also analyzed the time
taken to carry out the corresponding administrative tasks before actually executing the di-
vide and conquer codes, namely, instrumenting and then sending the gridified bytecodes
to the hosts participating in the experiments.

The evaluation involved the execution of seven different applications: prime factor-
ization (PF), the set covering problem (Cov), fast Fourier transform (FFT), the knapsack
problem (KS), Fibonacci series (Fib), matrix multiplication (MM) and adaptive numeri-
cal integration (Ad). To this end, we set up a cluster composed of 8 machines connected
through a 100 Mpbs LAN. Table 2 shows the characteristics of the machines of our ex-
perimental setting. To run the applications, we used JDK 5 and Satin 2.1. We chose appli-
cation parameters that produced moderately long-running computations. All tests asso-
ciated to the BYG variants of the applications were launchedfrom machine E. The HIS
was run on machine H. Figure 9 (a) depicts the overall averageexecution time for 25 runs
of these applications. As a complement, Figure 9 (b) compares the portion of the time



Table 2. Hardware/software specification of the machines of our experimental testbed

Machine CPU Memory (MB) Operating system

A Intel(R) Pentium(R) 4 2.00 GHz. 1.024 Ubuntu Linux 7.04

B Intel(R) Celeron(R) 2.40 GHz. 1.024 Mandriva Linux 2007.0

C Intel(R) Celeron(R) 2.40 GHz. 1.024 Mandriva Linux 2007.0

D Intel(R) Pentium(R) 4 2.80 GHz. 768 Mandriva Linux 2007.0

E Intel(R) Pentium(R) 4 2.80 GHz. 1.024 Mandriva Linux 2007.0

F Intel(R) Pentium(R) 4 2.80 GHz. 768 Mandriva Linux 2007.0

G Intel(R) Xeon(TM) Dual Core 2.66
GHz.

1.024 CentOS 4.2

H Pentium III (Coppermine) 852 Mhz. 256 Red Hat Linux 9
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Figure 9. Test applications: performance results

spent by BYG applications executing under Satin (i.e. within the Satin network) versus
the time it took to run these applications natively with Satin. In all cases, deviations were
below 7%. Despite being an acceptable noise level when experimenting on wide area
Grids, note that this percentage is rather high for a LAN-based cluster. The cause of this
effect is that Satin –and therefore our Satin connector– relies on a task scheduler that is
based on a set ofrandomtask stealing algorithms [31]. All in all, except forFFT andAd,
BYG did not performed much worse than Satin, even when BYG adds a software layer
on top of Satin.

The ordinary version of the applications were implemented as a bootstrap class that
invoked the actual CPU-intensive computation, which was implemented by another class.
In particular, the bootstrap class ofFFT passed as an argument to the main computation
a very large array of data. Consequently, upon gridification, sending the computation
for execution to a Satin network required to send this data aswell, which resulted in a
significant performance overhead. In contrast, in SatinFFT, the invocation was far more
cheaper as it is performed locally. In a broad sense, the cause of this problem is that
distributing the components of the application among different machines and therefore
different address spaces can potentially cause the interactions between these components
to become much more expensive.



To mitigate this problem, a mechanism for deciding whether it is convenient to sub-
mit an operation for execution by means of its associated connector or not could be em-
ployed. For instance, we could provide a programmatic or rule-based support to allow
developers to express heuristics to indicate the cases in which gridifying an operation
may be beneficial (e.g. when the size of the arguments is belowsome threshold). In ad-
dition, complex heuristics for automatically computing the potential gains of gridifying
code could be incorporated, for example by taking into account environmental conditions
and using user-provided performance models.

From Figure 9 (b) it can be seen that for all the test applications BYG introduced per-
formance gains (of up to 21% for the case ofMM) with respect to Satin. Similar effects
were observed when experimenting with our Satin server and networks in Internet-wide
Grids [20]. This fact may result confusing since the BYG connector used in the experi-
ments employs Satin as the underlying support for application execution, but by adding
technological noise such as custom Java streams and class reflection, which intuitively
should translate into performance overhead. However, the bytecode that is interpreted
by the Satin runtime in either cases is subject to different execution conditions. On one
hand, when running a pure Satin application, the Satin runtime performs a handshaking
process among its hosts to start and cooperatively execute the application. On the other
hand, when employing our Satin connectors, the Satin-enabled version of the application
being executed is sent by BYG to an already deployed Satin network, which is running
a pure Satin application that is able to execute other Satin applications.

With respect toAd, the source of overhead was in the time it took to execute its Grid-
enabled bytecode under Satin (see Figure 9 (b)). As mentioned in Section 3.1, at present,
our bytecode analysis techniques and our barrier insertionscheme present certain limita-
tions that will be addressed in future implementations of BYG. Particularly, the bytecode
rewriting process of BYG may cause applications to have moreSatinsync primitives
than needed, which harms the performance of applications asthe cost of invoking this
primitive is rather high. This may also reveal a limitation of the implementation of the
Satinsync primitive, which is somewhat expensive and does not consider the case when
it is unintentionally called by a programmer more than once after doing spawns.

Figure 10 shows the averagegridification time (25 executions), which includes (a)
the time it took to analyze and instrument the ordinary bytecode in order to inject middle-
ware bridging instructions and synchronization barriers,(b) the time it took to the Satin
compiler to instrument the bytecode resulting from the previous step, and (c) the time it
took to build and transfer the application jar files to the machines involved in the compu-
tations. The file sizes were approximately 14.3 KB (PF), 21 KB (Cov), 19.1 KB (FFT),
12.6 KB (Fib), 21.4 KB (KS), 20.6 KB (MM) and 15.2 KB (Ad). In all cases, gridification
time was around 3 seconds. It can be observed that (a) remainsalmost constant, which
shows that the performance of the bytecode instrumentationtechniques of BYG, at least
for these applications, was not affected by the size (in number of bytecode instructions)
of the class methods that were configured to be passed on to Satin via connectors. On
the other hand, as depicted in the figure, the time required bythe Satin compiler to in-
strument the applications appears to be slightly more affected by the binary size of those
methods, since this compiler performs an analysis over the entire class being gridified.
When building a pure Satin application, this overhead is notpresent since compilation
is performed offline. However, the programmer must manuallybuild its application with
Satin. Finally, since the experiments were run on a LAN, the time required to transfer
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Figure 10. Test applications: bytecode instrumentation and transfer

these files were negligible. Again, this overhead is not present in Satin, as it does not
support automatic transfer of classes to the Grid hosts thatexecute an application. To
alleviate the negative effects that would result from employing our bytecode transfer
mechanism in wide-area networks, a file caching technique could be used.

5. Conclusions and future work

We have presented BYG, a new approach to simplify the execution of conventional ap-
plications on Grids. Essentially, the goal of BYG is to let developers to gridify the binary
code of existing applications and at the same to select whichportions of the compiled
code should run on a Grid and what execution service should beused in each case. The
materialization of the approach is oriented towards gridifying component-based applica-
tions implemented in Java. As a consequence, we can reasonably expect that the tool will
benefit a large number of today’s applications.

Experimental results suggest that employing BYG does not imply resigning perfor-
mance. In contrast, BYG produces Grid-enabled bytecode that can efficiently exploit ex-
isting Grid executions services. Particularly, we evaluated our tool by running a number
of CPU-intensive applications through Satin connectors and pure Satin, and most of the
BYG versions performed in a very competitive way with respect to Satin. We believe
this is an interesting result considering that the only tasks that are necessary to gridify an
application is to edit a configuration file and to specify a JVMargument. However, de-
spite these encouraging results, we are planning to conductmore experiments with other
applications and realistic Grid settings.

It is worth emphasizing that, although the experiments conceived Satin and BYG as
competitors, both tools are in some respect complementary.Basically, BYG promotes
separation between application logic and the Grid servicesthat are used to execute its
associated code. Moreover, these services are provided by existing Grid middlewares.
Thus, BYG represents an alternative method for gridifying binary codes rather than a



Grid execution serviceper se. In fact, BYG is currently able to leverage the execution and
parallelization services of the Satin platform. Besides, we are working on incorporating
more connectors to supply developers with a richer catalog of Grid execution services.
For example, we are developing a Condor connector that is based on a Java interface to
Condor clusters7.

We are extending our work in several directions. First, we are addressing the limita-
tions of the implementation of the Satin connector, this is,recognizing more high-level
Java sentences (e.g. try/catch), refining the algorithm forinserting Satin synchronization
barriers, and so on. Second, as mentioned above, we are implementing connectors for
more Grid middlewares. Finally, we are working on incorporating a programmatic or
rule-based support to allow developers to specify the set ofrules that govern gridifica-
tion, this is, deciding at runtime whether to run ordinary components via Grid services
or execute them unmodified instead.
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