Cloud Computing for Parameter Sweep Experiments:

Elina Pacini', Melisa Ribero!?, Cristian Mateos®, Anibal Mirasso?, Carlos Garcia
Garino'?

! nstituto para las Tecnologias de la Informacién y las Comunicaciones (ITIC) — UNCuyo,
Mendoza Argentina {epacini, cgarcial}l@itu.uncu.edu.ar
? Facultad de Ingenieria, UNCuyo, Mendoza, Argentina,
melisaribero@yahoo.com.ar, aemirasso@uncu.edu.ar
> ISISTAN - CONICET. Tandil, Buenos Aires, Argentina, cmateos@conicet.gov.ar

Abstract. Nowadays, scientists and engineers are more and more faced to the
need of computational power to satisfy the ever-increasing resource intensive
nature of their experiments. Traditionally, to cope with this, users have relied
on conventional computing infrastructures such as clusters and Grids. A recent
computing paradigm that is gaining momentum is Cloud Computing, which
offers a simpler administration mechanism compared to those conventional
infrastructures. However, there is a lack of studies in the literature about the
viability of using Cloud Computing to execute scientific and engineering
applications from a performance standpoint. We present an empirical study on
the employment of Cloud infrastructures to run parameter sweep experiments
(PSEs), particularly studies of viscoplastic solids together with simulations by
using the CloudSim toolkit. In general, we obtained very good speedups, which
suggest that disciplinary users could benefit from Cloud Computing for
executing resource intensive PSEs.

Keywords: Parameter Sweep, Viscoplastic Solids, Cloud Computing

Introduction

Parameter Sweep Experiments, or PSEs for short, is a very popular way of conducting
simulation-based experiments among scientists and engineers through which the same
application code is run several times with different input parameters resulting in
different outputs [1]. Representative examples of such kind of experiments are
sensitivity studies of results in terms of defined parameter changes like is the case of
imperfections in the simulation of simple tension test, or the study of buckling of
imperfect columns.

From a purely software perspective, most PSEs are cluster friendly since
individual inputs of an experiment can be handled by independent jobs. Therefore,
using a software platform such as Condor [2], which is able to exploit the distributed
nature of a computer cluster, allows these jobs to be run in parallel. In this way, not

1 This work is an extension of paper “E. Pacini et al., Simulation on Cloud Computing Infrastructures of
Parametric Studies of Nonlinear Solids Problems” presented in ADNTIIC 2011

only PSEs execute faster, but also more computing intensive experiments can be
computed, and hence more complex simulations can be performed. The same idea has
been systematically applied to execute PSEs on Grid Computing [3], which are
basically infrastructures that connect clusters via wide-area connections to increase
computational power. To this end, software platforms designed to exploit Grids
provide the illusion of the existence of a large supercomputer, which in turn
virtualizes and combines the hardware capabilities of many much less powerful,
geographically-dispersed machines to run resource intensive applications [4].

On the downside, for users not proficient in distributed technologies, manually
configuring PSEs is tedious, time-consuming and error-prone. As a consequence,
users typically waste precious time that could be instead invested into analyzing
results. The availability of elaborated GUIs —specially for Grids— that help in
automating an experimentation process has in part mitigated this problem. However,
the highly complex nature of today’s experiments and thus their associated
computational cost greatly surpasses the time savings that can be delivered by this
automation. Consequently, performance and particularly job scheduling becomes
crucial. Broadly, job scheduling involves the recurrent problem of efficiently mapping
a number of parallel jobs to available computing nodes in a distributed environment.

A recent distributed computing paradigm that is rapidly gaining momentum is
Cloud Computing [4,5,6], which bases on the idea of providing an on demand
computing infrastructure to end users. Typically, users exploit Clouds by requesting
from them one or more machine images, which are virtual machines running a desired
operating system on top of several physical machines (e.g. a datacenter). Interaction
with a Cloud is performed by using Cloud services, which define the functional
capabilities of a Cloud, i.e. machine image management, access to software/data,
security, and so on. Among the benefits of Cloud Computing is precisely a simplified
configuration and deployment model compared to clusters and Grids, which is
extremely desirable for disciplinary users. However, even when Cloud infrastructures
intuitively have the capabilities to deliver good performance, very few detailed
studies about the speedups achieved for PSEs have been reported in the literature.

In this work, we will show the benefits of Cloud Computing for executing PSEs
through a case study. The application domain under study involves PSEs of
viscoplastic solids [7], which explore the sensitivity of viscoplastic solid behavior in
terms of changes of certain model parameters (viscosity parameter 1, sensitivity
coefficient, and so on). In this sense parametric studies previously discussed for
imperfections [8] are extended for material parameters case, which were computed on
Clouds by using the CloudSim simulation toolkit [9]. Overall, although they cannot
be generalized, results show that by executing our experiments in our simulated
Clouds, depending on the configured computational capabilities and the scheduling
policy being used, near-to-ideal speedups can be obtained.

The rest of the chapter is organized as follows. The next Section provides more
details on Cloud Computing and the motivation behind considering this distributed
computing paradigm for executing PSEs. The Section also explains CloudSim, the
simulation toolkit used during the experiments. Section 3 describes our case study,
which involves a parametric study of nonlinear solids problems. Later, Section 4

presents the results obtained from processing these problems on Cloud Computing.
Finally, Section 5 concludes the chapter and describes prospective future works.

Background

Running Parameter Sweep Experiments (PSE) [1,10] involves many independent
jobs, since the experiments are executed under multiple initial configurations (input
parameter values) several times, to locate a particular point in the parameter space
that satisfies certain criteria. In addition, different PSEs have different number of
parameters. PSEs provide scientific value to a high throughput computing process
along with relative ease. Interestingly, PSEs find their application in diverse scientific
areas like Bioinformatics [11], Earth Sciences [12], High-Energy Physics [13],
Molecular Science [14] and even Social Sciences [15].

When designing PSEs there are several issues to tackle. On one hand, it is
necessary to generate all possible combinations of input parameters, which is a time-
consuming task and should be automated. Besides, it is not straightforward to provide
a general solution, since each problem has a different number of parameters and each
of them has its own variation interval. Another issue, which is in part a consequence
of the first issue, relates to scheduling PSEs on distributed environments, which is a
complex activity. For this reason, it is necessary to develop efficient scheduling
strategies to appropriately allocate the workload and reduce the computation time.

In recent years Grid Computing [3] and Cloud Computing technologies [5,6] have
been increasingly used for running such applications. PSEs are well suited for these
environments since they are inherently parallel problems with no or little data transfer
between nodes during computations. Since many applications require a great need for
calculation, these applications have been initially addressed to dedicated High-
Throughput Computing (HTC) infrastructures such as clusters or pools of networked
machines, managed by some software such as Condor [2]. Then, with the advent of
Grid Computing [3] new opportunities were available to scientists, since Grids
offered the computational power required to perform large experiments. Grid
Computing introduced new facilities such as dynamic service discovery, the ability of
relying on a large number of resources belonging to different administrative domains,
and finding the best set of machines that meet an application’s requirements. The use
of Grid Computing in scientific applications [16] has been successful in many
international projects and has led to the establishment of world-wide infrastructures
available for computational science [17,18,19].

Despite the widespread use of Grid technologies in scientific computing, as
demonstrated by the large amount of projects served by Grid Computing, some issues
still make the access to this technology not easy for disciplinary or domain users. For
example, operationally some Computational Grids are bureaucratic, since research
groups have to submit a proposal describing the type of research they want to carry
out prior to executing their experiments. This approach leads to a competitive use of
scientific Grids, and minor research projects cannot get access to them.

Other usage-related issues involve technical hurdles. In most cases scientific Grids
feature a prepackaged environment in which applications will be executed. Then,
specific tools/APIs have to be used, and there could be limitations on the hosting
operating systems or the services offered by the runtime environment. On the other
hand, although Grid Computing favors dynamic resource discovery and provision of a
wide variety of runtime environments for applications, in practice, a limited set of
options are available for scientists, which are not in addition elastic enough to cover
their needs. A practical example, involves the use of specific software that could not
be available in the runtime environment were applications are executed. In general,
applications that run on scientific Grids are implemented as bag of job applications,
workflows, and MPI (Message Passing Interface) [20] parallel processes. Some
scientific experiments could not fit into these models and therefore have to be
redesigned to exploit a particular scientific Grid.

Cloud Computing: Overview

All in all, while the aforementioned bureaucratic issues can be a minor problem, the
technical ones could constitute a fundamental obstacle for next generation scientific
computing. Cloud Computing [5,6], the current emerging trend in delivering IT
services, has been recently proposed to address the aforementioned problems. By
means of virtualization technologies, Cloud Computing offers to end users a variety
of services covering the entire computing stack, from the hardware to the application
level, by charging them on a pay per use basis. This makes the spectrum of options
available to scientists, and particularly PSEs users, wide enough to cover any specific
need from their research. Another important feature, from which scientists can
benefit, is the ability to scale up and down the computing infrastructure according to
the application requirements and the budget of users. By using Cloud-based
technologies scientists can have easy access to large distributed infrastructures and
are allowed to completely customize their execution environment, thus deploying the
most appropriate setup for their experiments. Moreover, by renting the infrastructure
on a pay per use basis, they can have immediate access to required resources without
any capacity planning and they are free to release resources when these latter are no
longer needed.

As suggested, central to Cloud computing is the concept of virtualization, i.e. the
capability of a software system of emulating various operating systems. By means of
this support, scientists can exploit Clouds by requesting from them machine images,
or virtual machines that emulate any operating system on top of several physical
machines, which in turn run a host operating system. Usually, Clouds are established
using the machines of a datacenter for executing user applications while they are idle.

Interaction with a Cloud environment is performed via Cloud services [5], which
define the functional capabilities of a Cloud, i.e. machine image management, access
to software/data, security, and so forth. Cloud services are commonly exposed to the
outer world via Web Services [21], i.e. software components that can be remotely
invoked by any application. By using these services, a user application can allocate
machine images, upload input data, execute, and download output (result) data for

further analysis. Finally, to offer on demand, shared access to their underlying
physical resources, Clouds dynamically allocate and deallocate machines images.
Besides, and also important, Clouds can coallocate N machines images on M physical
machines, with N > M, thus concurrent user-wide resource sharing is ensured. These
relationships are depicted in Fig. 1.

User 1 User 2 User N

App

Windows 05 Macos f=++fl unuxos

VM2l

wM12

M2z

M LM

MM

Virtual Machine Manager

Virtual Machine Manager

Virtual Machine Manager |

Linux 05

Windows 05

Solaris 0S5 |

Hardware

Hardware

Hardware

Physical Machine 1

Physical Machine 2

Physical Machine M

Fig. 1. Cloud Computing: High-level view

In summary, a Cloud gives users the illusion of a single, powerful computer in
which complex applications can be run. Besides, the software stack of the
infrastructure can be fully adapted and configured according to user’s needs. This
provides excellent opportunities for scientists and engineers to run applications that
demand by nature a huge amount of computational resources —i.e. CPU cycles,
memory and storage— and rely on specific software libraries.

With everything mentioned so far, we can say that from the perspective of domain
scientists, the complexity of traditional distributed and parallel computing
environments such as clusters and Grids should be hidden so that domain scientists
can focus on their main concern, which is performing their experiments. As a result,
the use of Cloud Computing infrastructures is a good choice for running scientific
applications. Precisely, for parametric studies such as the one presented in this work,
or scientific applications in general, the value of Cloud Computing as a tool to
execute complex applications has been already recognized within the scientific
community [22,23].

The CloudSim Toolkit: Simulation of Cloud Computing environments

CloudSim [9] is an extensible simulation toolkit that enables modeling, simulation
and experimentation of Cloud Computing infrastructures and application provisioning
environments. CloudSim supports both system and behavior modeling of Cloud
system components such as data centers, virtual machines (VMs) and resource
provisioning policies. A virtual machine (VM) is a software implementation of a

machine (i.e. a computer) that executes programs like a physical machine. By using
CloudSim, researchers and developers can focus on specific system design issues that
they want to investigate, without getting concerned about the low level details related
to Cloud-based infrastructures and services. This is desirable as intuitively putting a
real Cloud to work demands much administration effort.

CloudSim offers support for modeling and simulation of large scale Cloud
Computing infrastructures, including data centers on a single physical computing
node. Besides, CloudSim provides a self-contained platform for modeling data
centers, service brokers, scheduling, and allocations policies. In addition, CloudSim
lets users to easily switch between space-shared and time-shared allocation of both
processing elements (PEs) and jobs to virtualized services.

The core hardware infrastructure services related to Clouds are modeled by a
Datacenter component for handling service requests. A Datacenter is composed by a
set of hosts that are responsible for managing VMs during their life cycle. Host is a
component that represents a physical computing node in a Cloud, and as such is
assigned a pre-configured processing capability, memory, storage, and scheduling
policy for allocating processing elements (PEs) to VMs.

CloudSim supports scheduling policies at the host level and at the VM level. At the
host level it is possible to specify how much of the overall processing power of each
PE in a host will be assigned to each VM. At the VM level, the VMs assign a specific
amount of the available processing power to individual jobs units -called cloudlet by
CloudSim- that are hosted within its execution engine. At each level, CloudSim
implements the time-shared and space-shared allocation policies.

When employing the space-shared policy only one VM can be running at a given
instance of time, this policy takes into account how many processing cores will be
delegated to each VM, and how much of the processing core’s capacity will
effectively be attributed for a given VM. So, it is possible to assign specific CPU
cores to specific VMs. The same happens for provisioning cloudlets within a VM,
since each cloudlet demands only one PE. If there are other cloudlets ready to run at
the same time, they have to wait in the run queue. The estimated start time depends on
the position of the cloudlet in the execution queue, because the processing unit is used
exclusively by one cloudlet. With the space-shared policy CloudSim processes jobs in
first come first serve basis. This is the sequence in which cloudlets are sent to the
VMs by the broker. The broker models a high-level software component that controls
which cloudlet should be sent to which VM and in what sequence. Last but not least,
with the fime-shared policy, the processing power of hosts is concurrently shared by
the VMs. Therefore, multiple cloudlets can simultaneously multi-task within the same
VM. With this policy, there are no queuing delays associated with cloudlets.

Case Study: A PSE for nonlinear solids problems

In order to assess the effectiveness of Cloud Computing environments for executing
PSEs, we have processed a real experiment by using different Cloud infrastructures
simulated via CloudSim toolkit. The case study chosen is the problem proposed in

[24], in which a plane strain plate with a central circular hole is studied. The
dimensions of the plate are 18 x 10 m, R =5 m. Material constants considered are E =
2.1 10° Mpa; v = 0:3; o, = 240 Mpa; H = 0. A Perzyna viscoplastic model with m = 1
and n = o is considered. The large strain elasto/viscoplastic Finite Element code
SOGDE is used in this study. References to SOGDE can be seen in the works of
[25,26] and application problems simulated with the code can be found in [27]. A
detailed presentation of viscoplastic theory, numerical implementation and examples
can be found in the works [7,28].

We have previously studied parametric problems where a geometry parameter of
imperfection was chosen [8]. In this case a constitutive material coefficient is selected
as a parameter. In order to do that different viscosity values of n parameter are
considered: 1.10% 2.10% 3.10% 4.10% 5.10%, 7.10% 1.10°, 2.10°, 3.10°, 4.10° 5.10°,
7.10°, 1.10%, 2.10, 3.10°, 4.10°, 5.10°, 7.10°, 1.107, 2.107, 3.107, 4.107, 5.107, 7.107and
1.10° Mpas.

The two finite element meshes displayed in Fig. 2 were tested. The first one has
288 elements and the second mesh has 1,152 elements. In both cases Q1/P0O elements
are chosen. Imposed displacements (at y=18m) are applied until a final displacement
of 2000 mm is reached in 400 equals time steps of 0.05 mm each one. For all the time
steps At = 1 has been set. Large strain effects are considered in all experiments
simulated.

F1r 777
[1]]/

[[/
J‘ [‘!‘ //7/7/7#7/7/’/

(a) 288 elements (b) 1,152 elements

Fig. 2. Finite element meshes using during our study

Experimental Results

This section presents the results obtained from our experimental study. The
experiments aim to demonstrate and evaluate the viability of using Cloud Computing
to perform parameter sweep experiments such as the one explained in the previous
section. As mentioned earlier, to carry out these experiments, we have used CloudSim
toolKkit.

The methodology followed to carry out the experiments was involved two steps.
First, in a single machine we run the PSE of the previous section by varying the
viscosity parameter 1 and measuring the execution time for 25 different experiments
(resulting in 25 input files with different input configurations) and two different
meshes (one of 288 elements and other comprising 1,152 elements). The PSE were
solved using the SOGDE solver. The characteristics of the machine on which the
experiments were carried out are shown in Table 1. The machine model is AMD
Athlon(tm) 64 X2 Dual Core Processor 3600+, equipped with the Linux operating
system (specifically an Ubuntu 11.04 distribution) running the generic kernel version
2.6.38-8.

The obtained real information (execution times, input/output file sizes) was then
used to feed CloudSim. The information regarding processing power was obtained
from the benchmarking support of Linux and as such is expressed in bogomips [29].
Bogomips (from bogus and MIPS), is a metric used by Linux operating systems that
indicates how fast a computer processor runs. Since the real tests were performed on a
machine running the Linux operating system, we have considered using the bogomips
measure which is as we mentioned the one used by this operating system to
approximate CPU power.

Table 1. Machine used to execute the PSE

Feature Characteristic

CPU power 4,008.64 bogoMIPS
Number of CPUs 2

RAM memory 2 Gbytes

Storage size 400 Gbytes
Bandwidth 100 Mbps

Furthermore, in a second step, we performed a number of simulations involving
executing the PSE on Cloud infrastructures by using CloudSim. The simulations have
been carried out by taking into account the bogomips metric. This is, once the
execution times have been obtained from the real machine, we calculated for each
experiment the number of executed instructions by the following formula:

NI; = bogomipsCPU* T; (1)

where,

® NI is the number of million instructions to be executed by or associated to a job i
® bogomipsCPU is the processing power of our real machine measured in bogomips
e T:is the time that took to run a job i on the real machine

Here is an example of how to calculate the number of instructions of a job that
took 117 seconds to be executed. The machine where the experiment was executed
has a processing power of 4,008.64 bogomips. Then, the resulting number of
instructions for this experiment was 469,011 MI (Million Instructions). CloudSim was

configured as a data center composed of a single machine —or “host” in CloudSim
terminology— with the same characteristics as the real machine where the experiments
were performed. The characteristics of the configured host are shown in Table 2.

Processing power is expressed in MIPS (Million Instructions Per Second), RAM
memory and Storage capacity are in MBytes, bandwidth in Mbps, and finally, PE is
the number of processing elements (CPUs/cores) of a host. Each PE had the same
processing power.

Table 2. Host characteristics

Host Parameters Value

Processing Power 4,008

RAM 4,096
Storage 409,600
Bandwidth 100

PE 2

Once configured, we checked that the execution times obtained by the simulation
coincided or were close to real times for each independent job performed on the real
machine. The results were successful in the sense that one experiment (i.e. a variation
in the value of 1) took 117 seconds to be solved in the real machine, while in the
simulated machine the elapsed time was 117.02 seconds. Once the execution times
have been validated for a single machine on CloudSim, a new simulation scenario
was set, which consisted of one datacenter with 10 hosts, each with the same
hardware capabilities as the real single machine, and 40 VMs, each with the
characteristics specified in Table 3. A summary of this simulation scenario is shown
in Table 4.

Table 3. Virtual Machine characteristics

VM Parameters Value
MIPS 4,008
RAM 1,024
Image Size 102,400
Bandwidth 25

PE 1

Vmm Xen

Table 4. CloudSim simulator configuration used in the experiments

Parameter Value
Number of Hosts 10
Number of VMs 40

Number of Cloudlets from 25 to 250

With this new scenario, we performed several experiments to evaluate the
performance of our PSE in a simulated Cloud Computing environment as we increase
the number of jobs to be performed, i.e. 25 * i jobs with i = 1, 2, ..., 10. This is, a
base subset comprising 25 jobs was obtained by varying the value of n, while the
extra jobs were obtained not by further varying this value but cloning the base subset.
The reason of this was to stress the various experimental Cloud scenarios.

Each job, called cloudlet by CloudSim, had the characteristics shown in Table 5,
where Length parameter is the number of instructions to be executed by a cloudlet in
MI (Million Instructions), which varied between 52,112 and 104,225 MI for the mesh
of 288 elements and between 244,127 and 469,011 for the mesh of 1,152 elements.
Moreover, PE is the number of processing elements required to perform a job (CPUs).
FileSize and OutputSize are the input file size and output file size in bytes,
respectively. As it is shown in Table 5 the experiments corresponding to the mesh of
288 elements had input files of 40,038 bytes, and the experiments corresponding to
the mesh of 1,152 elements of 93,082 bytes. A similar distinction applies to the sizes
of output files.

Table 5. Cloudlet configuration used in the experiments

Cloudlet parameters Value
Length Between 52,112 and 104,225 (mesh of 288 elements)
Between 244,127 and 469,011 (mesh of 1,152 elements)
PEs 1
FileSize 40,038 bytes (mesh of 288 elements)
93,082 bytes (mesh of 1,152 elements)
OutputSize 722,432 bytes (mesh of 288 elements)

2,202,010 bytes (mesh of 1,152 elements)

To perform the simulation we have considered, on one hand, that PSE cloudlets
have similar processing times. The processing times are similar because both input
and output files have the same size. Here, a job corresponds to execute an instance of
the parametric study of viscoplastic solid. On the other hand, the goal is to assign jobs
to Cloud hosts so that the total completion time, also known as makespan, is
minimized. Finally, the order in which cloudlets are processed on a particular host is
not relevant, since we assume they are completely independent, or in other words,
cloudlets do not cooperate to perform the same computation and do not share data.

In CloudSim, the amount of available hardware resources to each VM is
constrained by the total processing power and system bandwidth available within the
associated host. Therefore, scheduling policies must be applied in order to assign the
VMs to the host and get a maximum use of resources. On the other hand, cloudlets
must also be scheduled with some scheduling policy for a maximum resource
performance and minimize execution times.

In the next subsections we report on the obtained results when executing the 25
experiments of our PSE by combining the scheduling policies described in subsection
2.2. In addition, we have considered two different scenarios to evaluate the
performance of our experiments and consequently we have used two types of
environments, i.e. homogeneous and heterogeneous, which are explained below.

Homogeneous resources experiments

In this subsection we analyze how each scheduling policy responds when Cloud hosts
and VMs follow the specifications described in Table 2 and 3.

1.1.1 Space-shared provisioning for VMs and jobs

The provisioning scenario where the space-shared policy is applied for both VMs and
jobs (cloudlets) can be seen in Fig. 3. Here, the makespan of the whole cloudlets is
shown.

The makespan has shown a linear growth with respect to the increasing number of
cloudlets. After the creation of VMs, cloudlets were incrementally sent to VMs in
groups of 25 to measure the makespan as we increase the workload on the VMs. The
makespan rose from 38.21 seconds to 263.54 seconds when the number of cloudlets
increased from 25 to 250 and using the mesh of 288 elements (curve in red). The
makespan rose from 160.25 seconds to 1,000.86 seconds when the mesh used has
1,152 elements (curve in blue).

Space-shared(VMs), space-shared(cloudiets)
1000

mesh 288 ———
Q00 mesh 1152 ——

800
700
600
500
400
300
200

100

0

makespan (seconds)

0 25 50 75 100 125 150 175 200 225 250
number of tasks

Fig. 3. Space-shared provisioning for VMs and jobs: Results

As each VM requires one PE for processing (see Table 3), with the space-shared
policy only two VMs can actually run in a host at a given instant of time, because
each host has two PEs as it is shown in Table 2. Therefore, given a scenario
consisting of a total of 10 hosts and 40 VMs, at a given instant of time may be
assigned 20 VMs to the hosts, i.e. one VM by each PE using space-shared policy, and
the rest of the VMs can be assigned once the former set complete their execution.

As the number of PSEs and hence cloudlets in regard to the available amount of
resources increases, the estimated start time of each cloudlet depends on the position
of the cloudlet in the execution queue, since each PE is used exclusively by one
cloudlet under the space-shared policy. Remaining cloudlets are queued when there
are not free processing elements that can be used for execution.

The progress of execution times corresponding to the mesh of 288 elements when
we sent to execute a group of 150 cloudlets, i.e. a group of 150 parameter sweep
experiments as described in the previous section can be seen in Fig. 4 (curve in red).
Since, under this policy, each cloudlet had its own dedicated processing element, the
queue size (cloudlets waiting to be run) did not affect execution time of individual
cloudlets. As can be seen in the curve, the execution times were increasing linearly
approximately every 20 jobs. This is because as mentioned above, only 20 VMs were
created with the space-shared policy, so the cloudlets are sent to the VMs to run in
groups of 20 until they finish their execution. When the first submitted group of
cloudlets finishes their execution, 20 more are sent, and so on until all cloudlets are
executed.

Space-shared provisianing for WMs

180 ——
Space-shared(cloudlets)

160 | Time-shared(cloudlets) ——

time (seconds)

0 10 20 30 40 50 60 70 80 90 100110 120 130 140150
number of tasks

Fig. 4. Space-shared provisioning for VMs, space-shared and time-shared provisioning for jobs
(mesh of 288 elements): Results

1.1.2 Space-shared provisioning for VMs and time-shared provisioning for jobs

This scenario is shown in Fig. 5. Here, a space-shared policy is applied for allocating
VMs to hosts and time-shared policy for allocating job units to processing core within
a VM. When time-shared policy is used by VMs, during a VM lifetime all the
cloudlets assigned to it are dynamically context switched during their lifecycle.

The number of cloudlets to be performed again ranged from 25 to 250. The
makespan for the mesh of 288 elements (curve in red) was 38.21 seconds and 263.54
seconds when the number of cloudlets was equal to 25 and 250, respectively. The
makespan for the mesh of 1,152 elements was 160.25 seconds and 1,000.86 seconds
when the number of cloudlets increased from 25 to 250.

When employing the space-shared policy to allocate the VMs to hosts, only two
VMs can be run simultaneously (one VM per PE). Thus, only 20 VMs were assigned
to the 10 hosts. The same case was explained in the previous subsection where the
same policy was used to assign the VMs to host. In this scenario, when we used time-
shared policy to assign the cloudlets to VMs, the execution time of each cloudlet
varied as the number of submitted cloudlets to run increased. By using this
combination of policies, execution time was significantly and negatively affected
because the processing elements were concurrently context switched among the list of
scheduled jobs.

Space-shared(VMs), time-shared(cloudlets)
1000

mesh 288 ——
goQ |- mesh 1152 ——

800
700 ¢
600
500 ¢
400 ¢

malkespan (seconds)

300 ¢

200 ¢
100 +

0

Q 25 50 75 100 125 150 175 200 225 250
number of tasks

Fig. 5. Space-shared provisioning for VMs and time-shared provisioning for jobs: Results

The progress of execution times corresponding to the mesh of 288 elements when
we sent to execute a group of 150 cloudlets can be seen in Fig. 4 (curve in blue). The
first group of 20 cloudlets was able to complete earlier than the other ones because in
this case the hosts were not overloaded at the beginning of execution. The other

cloudlets took more time to completion because were exchanged among the
remaining processing elements to finish their execution. In the end, as more cloudlets
reached completion, comparatively more hosts became available for allocation.

1.1.3 Time-shared provisioning for VMs and space-shared provisioning for jobs

The provisioning scenario where the time-shared policy is applied for allocating VMs
to hosts and space-shared policy is applied for allocating jobs (cloudlets) can be seen
in Fig. 6.

The number of cloudlets to be performed was again in the range of 25-250. In this
scenario, the makespan for the mesh of 288 elements (curve in red) was 62.51
seconds and 339.17 seconds when the number of cloudlets was equal to 25 and 250,
respectively. When we carried out the experiments with the mesh of 1,152 elements
(curve in blue), the makespan was 280.94 seconds and 1,328.13 seconds when the
number of cloudlets was equal to 25 and 250.

In this scenario, each VM receives a time slice on each processing element, and
then distributes the slices among cloudlets on a space-shared policy. As the PEs are
shared, the amount of processing power available to an individual VM is not constant.
Given that, cloudlets are assigned based on a space-shared policy, which means that
at any given instance of time only one cloudlet can be actively using a processing
element.

Time-shared(VMs), space-shared(cloudlets)

1500 e

mesl _—
1400 1 paeh 1152 —
1300

1200
1100
1000
900
800
700
600
500
400

300
200
100

0

malkespan (seconds)

0 25 50 75 100 125 150 175 200 225 250
number of tasks

Fig. 6. Time-shared provisioning for VMs and space-shared provisioning for jobs: Results

The progress (curve in red) of execution times when we sent to execute a group of
150 cloudlets, or a group of 150 parameter sweep experiments as described in section
3 can be seen in Fig. 7. Since using the time-shared policy in the hosts the processing
power available is concurrently shared by VMs, here 40 VMs have been created in
the 10 available hosts. As can be seen in the curve, the execution times were
increasing gradually over the first 50 cloudlets. The 100 remaining jobs took

considerably longer than the 50 first jobs. This latter effect occurs because the VMs
available for processing within hosts begun to be switched between their PEs, which
consumes time.

Time-shared provisioning far VMs
220

'Spaée-sﬁared(c\ oudlets) -
200 F Time-shared(cloudlets)

time (seconds)

0 10 20 30 40 50 60 70 80 90 100110120130 140150
number of tasks

Fig. 7. Time-shared provisioning for VMs, space-shared and time-shared provisioning
for jobs (mesh of 288 elements): Results

1.1.4 Time-shared provisioning for VMs and jobs

In this scenario a time-shared allocation is applied for both VMs and job units. Fig. 8
shows the makespan from this scenario as the number of cloudlets increases from 25
to 250. When the time-shared policy is used, the processing power within a host is
concurrently shared by its associated VMs and the PEs of each VM are
simultaneously divided among its cloudlets. As a consequence, in this scenario, there
are no queuing delays associated with job units. CloudSim assumes that all the
computing power of PEs is available for VMs and cloudlets, and it is divided equally
among them.

In this scenario, the makespan for the mesh of 288 elements was 62.51, 91.42,
108.22, 139.53, 199.64, 202.05, 247.76, 247.75, 307.89 and 339.17 seconds when the
number of cloudlets was increased from 25 to 250 by groups of 25 cloudlets (see
Fig.8, curve in red). On the other hand, the makespan for the mesh of 1,152 elements
(curve in blue) was 280.94, 384.3, 449.11, 557.2, 780.55, 821.43, 922.3, 946.3,
1,198.52 and 1,328.13 seconds.

Time-shared(VMs), time-shared(cloudlets)

1500
1400 +
1300 +
1200
1100 +
1000 +
Q00 +
800
700
600
500
400 +

300 F 1
200 ¢ 1
100 + 1

0

mesh 288 ——
mesh 1152 ——

makespan (seconds)

Q 25 50 75 100 125 150 175 200 225 250
number of tasks

Fig. 8. Time-shared provisioning for VMs and jobs: Results

The progress (curve in blue) of execution times when we sent to execute a group
of 150 cloudlets is illustrated in Fig. 7. As the reader can see, the execution times are
consistent with that of the scenario of the previous subsection. Since there is a greater
number of VMs actually running at any time, it was not necessary to interchange the
jobs between the VMs. Whenever a cloudlet is ready to be executed, there is a
machine available to use.

Heterogeneous resources experiments

In this subsection we analyze how each scheduling policy responds when using a
Cloud with heterogeneous hosts. To analyze the performance of the scheduling
algorithms, one characteristic that is of importance in real world scenarios is how the
algorithms perform in the presence of resource heterogeneity. In this analysis, we
have considered hosts with a random number of PEs between 1 and 6, while the other
specifications are the same shown in Tables 2 and 3. Until now, each VM had only
one PE. Next, we discuss the same scenarios of the previous section, and perform a
comparison of job assignment with respect to homogeneous and heterogeneous
infrastructures.

1.1.5 Space-shared provisioning for VMs and jobs

The provisioning scenario where the space-shared policy is applied for both VMs and
cloudlets can be seen in Fig. 9. After the creation of VMs with a random number of
PEs, cloudlets were incrementally sent to VMs in groups of 25 to measure the
makespan as the workload on the VMs increased. The number of cloudlets to be
performed ranges from 25 to 250 as in the previous subsection. The allocations of
cloudlets to heterogeneous resources are illustrated in Fig. 9a and Fig. 9b by the curve

in blue. The red curve shows the same scenario that was discussed in subsection 4.1.1
for the case of homogeneous resources.

Space-shared(VMs), space-shared(cloud|ets) Space-shared(VMs), space-shared(cloudlets)

300 1000
resource homogeneity resource homogenaity

resource heterogeneity ——— 900 resource heterogeneity ———

250

200

150

100

malkespan (seconds)
makespan (seconds)

50

o] o]
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250

number of tasks number of tasks

(a) Mesh of 288 elements (b) Mesh of 1,152 elements

Fig. 9. Space-shared provisioning for VMs and jobs using resource heterogeneity: Results

Due to the fact that in this scenario the entire Cloud had more number of PEs
available to run the experiments (between 1 and 6 per resource), runtimes were
reduced significantly with respect to the homogeneous scenario. The makespan of the
first group of 25 cloudlets -corresponding to the mesh of 288 elements- was very
close to the makespan of the homogeneous scenario (see Fig. 9a). This makespan was
38.21 seconds for the homogeneous scenario and 26.1 seconds when using
heterogeneous resources. Here, makespan is close because in the worst case
(homogeneous scenario) the number of PEs available to execute the cloudlets is
nearby to the number of executed cloudlets (20 VMs to execute 25 cloudlets). Then,
each cloudlet is executed in one PEs until the former finishes. For the following
groups of cloudlets —between 50 and 250- the makespan was always lower when
using heterogeneous resources. When we sent 250 cloudlets the makespan was 159.89
seconds.

The same heterogeneous scenario when we using the mesh of 1,152 elements is
illustrated in Fig. 9b (curve in blue). Here the makespan was 117.12, 150.24, 231.38,
235.43, 288.54, 380.74, 454.94, 499, 563.07, and 604.22 seconds when the number of
cloudlets was increased from 25 to 250 by groups of 25 cloudlets.

1.1.6 Space-shared provisioning for VMs and time-shared provisioning for jobs

This subsection presents an heterogeneous scenario where the space-shared policy is
applied for allocating VMs to hosts and the time-shared policy is used for allocating
jobs to processing elements within a VM. Fig. 10 illustrates the makespan when the
number of cloudlets is increased from 25 to 250 and compares the results with the
homogeneous scenario. Here, the blue curve represents the makespan of cloudlets
when heterogeneous resources are used.

The curve in red illustrates the makespan for homogeneous resources. When we
compared the makespan, we obtained that the execution times for each group of

cloudlets submitted to run was greatly improved when relying on heterogeneity. This
improvement was because there was more PEs available to execute each group of
jobs.

Space-shared(VMs), time-shared(cloudlets) Space-shared(VVMs), time-shared(cloudlets)
300 1000 -
resource homogenaity resource homogeneity
resource heterogeneity ——— Q00 resource heterogeneity
250 800
5 3 700
g 200 g
8 g 600
& &
Z 150 Z 500
< @
& & 400
g 100 ¢
g g 300
50 200
100
o] o]
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
number of tasks number of tasks
(a) Mesh of 288 elements (b) Mesh of 1,152 elements

Fig. 10. Space-shared provisioning for VMs and time-shared provisioning for jobs using
resource heterogeneity: Results

In this heterogeneous scenario, for the mesh of 288 elements (see Fig. 10a) the
makespan was 26.1 seconds and 146.82 seconds when the number of cloudlets was
equal to 25 and 250, respectively. The experiments corresponding to the mesh of
1,152 elements is illustrated in Fig. 10b. The makespan was 117.12, 157.21, 231.38,
324.52, 342.74, 381.91, 414.94, 451.04, 551.88 and 606.57 seconds when the number
of cloudlets was increased from 25 to 250 by groups of 25 cloudlets.

1.1.7 Time-shared provisioning for VMs and space-shared provisioning for jobs

An heterogeneous experimental scenario where the time-shared policy is applied for
allocating VMs to hosts and the space-shared policy is used for allocating jobs
(cloudlets) to PEs within a VM can be seen in Fig. 11.

The number of cloudlets to be computed was again in the range 25-250. The
makespan for the case of heterogeneous resources is illustrated in blue and the
makespan when we used homogeneous resources was colored in red.

Time-shared(VMs), space-shared(cloudiets) Time-shared(VMs), space-shared(cloudlets)

350 1400
resource homageneity

resource heterogenaity

resource homogeneity

1300
1200
1100
1000
900
800
700
600
500
400
300
50 200
100

resource heterogensity ——

150

makespan (seconds)
malkespan (seconds)

100

0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
number of tasks number of tasks

(a) Mesh of 288 elements (b) Mesh of 1,152 elements

Fig. 11. Time-shared provisioning for VMs and space-shared provisioning for jobs using
resource heterogeneity: Results

As it is shown in the Fig. 11a and Fig. 11b, both curves show similar behavior.
This is because we used the same allocation policies. The way the schedulers decided
to assign the VMs to hosts and the cloudlets to VMs took into account the same
considerations. This means that each VM receives a time slice on each processing
element in the host, and then distributes the slices among cloudlets on a space-shared
policy. The makespan for the mesh of 288 elements was 31.35 seconds and 154.15
seconds when the number of cloudlets was equal to 25 and 250. When we carried out
the experiments with the mesh of 1,152 elements, the makespan was 146.37 seconds
and 599.05 seconds when the number of cloudlets was equal to 25 and 250.

1.1.8 Time-shared provisioning for VMs and jobs

In this subsection we present the results for a heterogeneous scenario where the time-
shared policy is applied. The progress (curve in blue) of execution times as the
number of cloudlets increase from 25 to 250 is illustrated in Fig 12.

In this heterogeneous scenario, the makespan was 146.37 seconds and 677.64
seconds when the number of cloudlets was equal to 25 and 250, respectively. In the
figure, we have performed the comparison with the scenario composed of
homogeneous resources (curve in red). Overall, we obtained that, with this
heterogeneous scenario, the makespan for the entire set of cloudlets was significantly
reduced.

In this heterogeneous scenario, the makespan for the mesh of 288 elements
illustrated in Fig. 12a was 43.88, 45.17, 49.05, 81.22, 90.6, 91.55, 119.93, 121.07,
162.94 and 174.3 seconds when the number of cloudlets was increased from 25 to 250
by groups of 25 cloudlets. In the figure, we have performed the comparison with the
scenario composed of homogeneous VM (curve in red). Overall, we obtained that,
with this heterogeneous scenario, the makespan for the entire set of cloudlets was
significantly reduced. The same scenario when using the mesh of 1,152 elements is
presented in Fig. 12b. Here, the makespan was 146.37 seconds and 677.64 seconds
when the number of cloudlets was equal to 25 and 250, respectively.

Time-shared(VMs), time-shared(cloucdlets) Time-shared(VMs), time-shared(cloudlets)

350 1400 -
resource homogenalty resource homogansity ——

resource heterageneity 1300 resource heterogeneity
1200

1100
1000
900
800
700
600
500
400
300
50 200
100

makespan (seconds)
makespan (seconds)

0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
number of tasks number of tasks

(a) Mesh of 288 elements (b) Mesh of 1,152 elements

Fig. 12. Time-shared provisioning for VMs and jobs using resource heterogeneity: Results

For the sake of summarization, Table 6 shows a comparison of the different
obtained makespans for each group of jobs (from 25 to 250) when the number of
processing elements within hosts varies as described previously. For space reasons,
we have summarized the experiments corresponding to the mesh of 1,152 elements
only.

Summary and discussion

In the previous sections we have reported the results obtained from executing our PSE
on a simulated Cloud under two different scenarios and also taking into account
whether the resources are homogeneous or heterogeneous. According to the
experimental results the makespan of cloudlets depends on the policy used to assign
the VMs to hosts. When the space-shared policy is used, the scheduler assigns as
many VMs as PEs have available on the hosts (20 VMs in the proposed scenario).
Instead, when time-shared policy is used, the PEs share their time slots among all
VMs to be created (40 VMs).

On the other hand, the cloudlets are sent to be executed something similar
happens. When using the space-shared policy each cloudlet is assigned to a VM until
it completes its execution. With the time-sharing policy processing power must be
shared among several cloudlets, generating a lot of exchanges for completing their
execution, which makes each cloudlet to take longer to finish.

The better performance obtained by the space-shared policy is mainly because
each VM can allocate and get all the processing power that needs to execute assigned
cloudlets from the host where the VM executes. Instead, with the time-shared policy,
each VM receives a time slice on each processing element, and then distributes the
slices among the PSEs to be executed. Due to the fact that the VMs have less
processing power (time slices) the experiments took longer to complete. As a result,
the space-shared policy was more appropriate to this type of PSEs.

Table 6. Summary of the makespan for the mesh of 1,152 elements (SS=Space-shared, TS=Time-shared)

Homogeneous Heterogeneous
Cloudlets SS(VMs), SS(VMs), TS(VMs), TS(VMs), SS(VMs), SS(VMs), TS(VMs), TS(VMs),
SS(cloudlets) TS(cloudlets) SS(cloudlets) TS(cloudlets) SS(cloudlets) TS(cloudlets) SS(cloudlets) TS(cloudlets)
25 160.25 sec. 160.25 sec. 280.94 sec. 280.94 sec. 117.12 sec. 117.12 sec. 146.37 sec. 146.37 sec.
50 232.36 sec. 232.36 sec. 384.30 sec. 384.30 sec. 150.24 sec. 157.21 sec. 168.24 sec. 160.01 sec.
75 342.26 sec. 342.26 sec. 449.11 sec. 449.11 sec. 231.38 sec. 231.38 sec. 198.92 sec. 210.52 sec.
100 414.27 sec. 414.27 sec. 557.20 sec. 557.20 sec. 235.43 sec. 324.52 sec. 230.85 sec. 229.86 sec.
125 553.39 sec. 553.39 sec. 780.55 sec. 780.55 sec. 288.54 sec. 342.74 sec. 355.53 sec. 267.00 sec.
150 625.41 sec. 625.41 sec. 821.43 sec. 821.43 sec. 380.74 sec. 381.91 sec. 468.62 sec. 340.74 sec.
175 727.95 sec. 727.95 sec. 922.30 sec. 922.30 sec. 454.94 sec. 414.94 sec. 480.27 sec. 385.60 sec.
200 794.04 sec. 794.04 sec. 946.30 sec. 946.30 sec. 499.00 sec. 451.04 sec. 547.26 sec. 416.02 sec.

225 954.40 sec. 954.40 sec. 1,198.52 sec. 1,198.52 sec. 563.07 sec. 551.88 sec. 569.09 sec. 541.54 sec.

250 1,000.86 sec. 1,000.86 sec. 1,328.13 sec. 1,328.13 sec. 604.22 sec. 606.57 sec. 599.05 sec. 677.64 sec.

Subsequently, we performed the analysis of the same scenarios, but this time in a
heterogeneous environment. The behavior of the different combinations of scheduling
techniques was exactly the same as the case of homogeneous resources. Although the
scheduling criteria to assign VMs to hosts and cloudlets to VMs were the same, the
makespan was significantly reduced for all scenarios. This improvement in the
makespan was because in the heterogeneous environment were available as many PEs
as needed to run experiments.

A summary of the four scenarios presented above for the homogeneous
environment and for the meshes of 288 and 1,152 elements are illustrated in Fig. 13a
and 13b. As the reader can see, the makespan coincide whenever the scheduling
policy used to allocate the VM is the same (blue and orange curves for space-shared
policies, red and green curves for time-shared policies).

Space-shared and time-shared scheduling Space-shared and time-shared scheduling
spate-shared(Vms), space-shared(doudlets) / 1400 Spack-sharEd(Vms), space-shared(cloudlet’s)
space-shared(\Vms), time-shared(cloudlets) P 1300 space-shared(\Vms), time-shared(cloudlets) /
300 time-shared(Vms), time-shared(cloudlets) 1200 time-shared(Vms), time-shared(cloudlets)
time-shared(Vms), space-shared(cloudlets) 1100 time-shared(Vms), space-shared(cloudlets)

250 y SR
%; / / %\ 1000 ’
5 2 900 — /
] S
g 200 — e @ 800 //
2 K L
= / 7 = 700 o
g 150 I g 600 e
@ o
g . / / £ s00 s
£ 100 i £ 400 ,//

e 300 T o
50 e 200 L
100
o] o]
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
number of tasks number of tasks
(a) Mesh of 288 elements (b) Mesh of 1,152 elements

Fig. 13. Space-shared and time-shared policies for VMs and cloudlets: Results

Finally, we performed a speedup analysis to measure the performance of each
technique (space-shared and time-shared) to execute the PSEs on the Cloud with
respect to the sequential execution on a single machine. The speedup for the mesh of
288 elements is shown in Fig. 14, and the speedup for the mesh of 1,152 elements in
Fig. 15.

The speedup is calculated as:

S,=T,/T,)

were,

e pis the number of processing elements

e T,is the completion time of the sequential execution in a single machine.

¢ T, is the completion time of the parallel execution with p processing elements

25 space-shared(Vms), space-shared(foudlets) 175 Spate-shaled(Vms), space-shared(doudiets)
space-shared(\Vms), time-shared(cloudlets) space-shared(Vms), time-shared(cloudlets)
time-shared(Vms), time-shared(cloudlets) time-shared(Vms), time-shared(cloudlets)
20 time-shared(Vms), space-shared(cloudlets) 150 time-shared(Vms), space-shared(cloudlets)
/\///\/
I 125 ﬂ\ o
s
" ; /\ > :—74><)(//
v — k 100 it

speedup
speedup

10 / 75

50
5
25
0 0
0 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
number of tasks number of tasks
(a) Without resource heterogeneity (b) With resource heterogeneity

Fig. 14. Speedup achieved by space-shared and time-shared policies (mesh of 288 elements):

Results

25 space-shared(Vims), space-shared(toudlets) 50 space-shared(Vms), space-shared(&loudlets)
space-shared(Vms), time-shared(cloudlets) space-shared(Vms), time-shared(cloudlets)
time-shared(Vms), time-shared(cloudlets) » time-shared(Vms), time-shared(cloudlets)

2 time-shared(Vms), space-shared(cloudlets) 20 time-shared(Vms), space-shared(cloudiets)

T
T 35
L

5 [w g —]
/ /\// S ’ W

10 ,/ 20 /
/ 15 y,

speedup
speedup

5 10
5
o] 0
o] 25 50 75 100 125 150 175 200 225 250 0 25 50 75 100 125 150 175 200 225 250
number of tasks number of tasks
(a) Without resource heterogeneity (b) With resource heterogeneity

Fig. 15. Speedup respect to space-shared and time-shared policies (mesh of 1,152 elements):
Results

We conclude that a scenario in which the space-sharing policy is used for the VMs
allocation to hosts enables a better speedup than the time-sharing policy in both
scenarios (homogeneous and heterogeneous). While for the experiments we have
conducted in this work a space-share policy for the allocation of VMs to hosts yields
better results, due to the fact that the employed cloudlets are sequential —i.e. they have
no inner parallelism to exploit—, a time-share policy to assign the VMs to hosts would
be more appropriate for other types of applications (not batch or sequential) and also
could be good to improve not only the makespan but also the perceptible response
time to the user, since incoming jobs could be periodically scheduled and then
executed in small groups, thus giving sign of progress.

Conclusions

Cloud Computing is a new paradigm that provides the means for building the next
generation distributed and parallel computing infrastructures. Although the use of
Clouds finds its roots in IT environments, the idea is gradually entering scientific and
academic ones. Even when the positive effects of Cloud Computing regarding
simplified administration is a well-known fact, little research has been done with
respect to evaluating the benefits of the paradigm for scheduling and executing
resource intensive scientific applications. In this sense, through a real case study and
simulations, we have reported on the speedups obtained when running parameter
sweep experiments on Clouds. Results are quite encouraging and actually support the
idea of using Clouds in the academia

At present, we are extending this work in several directions. First, we are
conducting studies with other kind of PSEs, such as tension tests in metals [27], to
further support our claims. Second, one of the key points to achieve good
performance when using Clouds concerns job scheduling. In particular, there is an
important amount of work in this respect in the area of Cloud Computing and
distributed systems in general that aim at building schedulers by borrowing notions
from Swarm Intelligence (SI), a branch of Artificial Intelligence that comprise models
that resemble the collective behavior of decentralized, self-organized systems like
ants, bees or birds. Moreover, a recent survey of our own [30] shows that there is little
work regarding Sl-based schedulers for Cloud Computing. Therefore, we aim at
designing a new SI-based scheduler that is capable of efficiently run PSEs. We are
also planning to embed the resulting scheduler into CloudSim in order to provide
empirical evidence of its effectiveness. Eventually, we could implement the scheduler
on top of a real (not simulated) Cloud middleware or support, such as Eucalyptus
(http://www.eucalyptus.com).

References

1. Youn C. and Kaiser T. Management of a parameter sweep for scientific applications on
cluster environments. Concurrency and Computation: Practice and Experience, vol. 22, pp.
2381-2400, (2010)

2. Thain D., Tannenbaum T., and Livny M. Distributed computing in practice: The Condor
experience. Concurrency and Computation: Practice and Experience, vol. 17, pp. 323-356,
(2005)

3. Foster 1. and Kesselman C. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Inc., San Francisco, CA, USA, (2003)

4. Foster 1., Zhao Y., Raicu L. and Lu S. Cloud Computing and Grid Computing 360-degree
compared. In Grid Computing Environments Workshop (GCE '08), IEEE Computer
Society, pp. 1-10, (November 2008)

5. Buyya R., Yeo C.S., Venugopal S., Broberg J., and Brandic 1. Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation Computer Systems, vol. 25, pp. 599-616, (2009)

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

Dikaiakos M.D., Katsaros D., Mehra P., Pallis G. and Vakali, A. Cloud Computing:
Distributed Internet Computing for IT and Scientific Research, IEEE Internet Computing,
vol.13, No.5, pp.10-13, (September 2009)

. Garcia Garino C., Ribero Vairo M., Andia Fagés S., Mirasso A. and Ponthot J.-P.:

Numerical Simulation of Finite Strain Viscoplastic Problems. Invited paper, Numerical
methods for large deformation analysis minisymposium, Boman R. & Ponthot J.-P.
(Organisers) in Proceedings of Fifth International Conference on Advanced
COmputational Methods in ENgineering (ACOMEN 2011), M. Hogge et al.(Eds.), Liege,
Belgium, 14-17 November 2011, University of Liege, (2011). ISBN: 978-2-9601143-1-7
Careglio C., Monge D., Pacini C., Mateos C., Mirasso A. and Garcia Garino C.:
Sensibilidad de resultados del ensayo de traccién simple frente a diferentes tamafios y tipos
de imperfecciones. In Dvorkin E., Goldschmit M., and M. Storti, editors, Proceedings of II
South American Congress on Computational Mechanics (MECOM 2010), Mecénica
Computacional, XXIX, pages 4181-4197, Buenos Aires, Argentina, (2010), AMCA. ISSN
1666-6070.

Calheiros R.N., Ranjan R., Beloglazov A., De Rose C., and Buyya R. Cloudsim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software - Practice and Experience, vol. 41, pp. 23-50, (2011)
Samples M.E., Daida J.M., Byom M. and Pizzimenti M. Parameter sweeps for exploring
GP parameters. In Conference on Genetic and Evolutionary Computation, GECCO '05, pp.
212-219, (2005)

Sun C., Kim B., Yi G. and Park H. A model of problem solving environment for integrated
bioinformatics solution on grid by using condor. In Grid and Cooperative Computing, pp.
935-938, (2004)

Gulamali M., Mcgough A., Newhouse S. and Darlington J. Using ICENI to run parameter
sweep applications across multiple grid resources. In Global Grid Forum 10, Case Studies
on Grid Applications Workshop, (2004)

Basney J., Livnry M. and Mazzanti P. Harnessing the capacity of computational grids for
high energy physics. In Conference on Computing in High Energy and Nuclear Physics,
(2000)

Wozniak J., Striegel A., Salyers D. and Izaguirre J. GIPSE: Streamlining the management
of simulation on the Grid. In 38th Annual Simulation Symposium, pp. 130-37, (2005)
Axelrod R. The Dissemination of Culture: A Model with Local Convergence and Global
Polarization. Journal of Conflict Resolution, vol.41, No.2, pp. 203-226, (1997)

Coveney P., Chin J., Harvey M. and Jha S. Scientific grid computing: The first generation.
Computing in Science and Engineering, vol. 7, pp. 24-32, (September 2005)

Pordes R., Petravick D., Kramer B., Olson D., Livny M., Roy A., Avery P., Black-burn K.,
Wenaus T., Wurthwein F., Foster 1., Gardner R., Wilde M., Blatecky A., McGee J. and
Quick R. The open science grid. Journal of Physics: Conference Series, vol.78, No.1,
pp-012-057, (2007)

Gagliardi F. and Begin M.E.. Egee - providing a production quality grid for e-science. In
Proceedings of the 2005 IEEE International Symposium on Mass Storage Systems and
Technology, IEEE Computer Society, pp. 88-92 (2005)

. Catlett C TeraGrid: A Foundation for US Cyber infrastructure. In NPC’05, Berlin

Heidelberg, Springer, (2005)
Gropp W., Lusk E., and Skjellum A. Using MPI: Portable Parallel Programming with the
Message Passing Interface. MIT Press, (1994)

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.

Erickson J. and Siau K. Web Service, Service-Oriented Computing, and Service-Oriented
Architecture: Separating hype from reality. Journal of Database Management, vol. 19, pp.
42-54, (2008)

Wang L., Tao J., Kunze M., Castellanos A.C., Kramer D., and Karl W. Scientific cloud
computing: Early definition and experience. In: 10th IEEE International Conference on
High Performance Computing and Communications, pp. 825-830, (2008)

Pacini E., Ribero M., Mateos C., Mirasso A. and Garcia Garino A. Simulation on Cloud
Computing Infrastructures of Parametric Studies of Nonlinear Solids Problems. Advances
in New Technologies, Interactive Interfaces and Communicability (ADNTIIC 2011), pp.
56-68, F.V. Cipolla-Ficarra, A. Kratky, K. Veltman, M. Brie, J. Huang, E. Nicol, G. Mori,
and M. Cipolla-Ficarra (Eds.), Blue Herons, (2011). ISBN 978-88-96471-03-6.

Alfano G., Angelis F.D., and Rosati L. General Solution procedures in elasto-
viscoplasticity. Computer Methods in Applied Mechanics and Engineering, vol. 190, pp.
5123-5147, (2001)

Garcia Garino C. and Oliver J. Un modelo constitutivo para el andlisis de sélidos
elastoplasticos sometidos a grandes deformaciones: Parte i formulacién tedrica y
aplicacién a metales. Revista internacional de métodos numéricos para célculo y disefio en
ingenierfa, vol.11, pp. 105-122, (1995)

Garcia Garino C. and Oliver J. Un modelo constitutivo para el andlisis de sdlidos
elastoplasticos sometidos a grandes deformaciones: Parte ii implementacion numérica y
ejemplos de aplicacion. Revista internacional de métodos numéricos para célculo y disefio
en ingenierfa, vol.12, pp. 147-169, (1996)

Garcfa Garino C., Gabaldén F., and Goicolea J.M. Finite element simulation of the simple
tension test in metals. Finite Elements in Analysis and Design, vol. 42 (13), pp. 1187-
1197, (2006)

Ribero Vairo M., van Hooijdonk J., Andfa Fagés S., Mirasso A. and Garcia Garino C.:
Andlisis de un modelo elasto-viscopldstico no-lineal, Actas del ENIEF 2011, XIX
Congreso sobre Métodos Numéricos y sus Aplicaciones. Mecanica Computacional

Vol XXX, pp. 787-803, O. Moller, J. W. Signorelli, M. A. Storti (Eds.), AMCA, (2011).
ISSN 1666-6070.

Van Dorst W. Bogomips mini-howto. http://www.clifton.nl/bogomips.html, (March 2006)

Pacini E., Mateos C., and Garcia Garino C. Planificadores basados en inteligencia
colectiva para experimentos de simulaciéon numérica en entornos distribuidos. In: Sexta
Edicién del Encuentro de Investigadores y Docentes de Ingenieria ENIDI'11. (2011)

http://www.clifton.nl/bogomips.html

	1.1.1 Space-shared provisioning for VMs and jobs
	1.1.2 Space-shared provisioning for VMs and time-shared provisioning for jobs
	1.1.3 Time-shared provisioning for VMs and space-shared provisioning for jobs
	1.1.4 Time-shared provisioning for VMs and jobs
	1.1.5 Space-shared provisioning for VMs and jobs
	1.1.6 Space-shared provisioning for VMs and time-shared provisioning for jobs
	1.1.7 Time-shared provisioning for VMs and space-shared provisioning for jobs
	1.1.8 Time-shared provisioning for VMs and jobs

