
Service Oriented Computing:
Web Service standards

Dr. Cristian Mateos Diaz
(http://users.exa.unicen.edu.ar/~cmateos/cos)

ISISTAN-UNICEN-CONICET

● Domain-specific XML-based standards
– e.g., MathML, DrawML, RSS, XHTML, SOAP/WSDL/WADL SOAP/WSDL/WADL

● A number of general standards:

Well-formed document instances

Validation of document instances

Parsing/transformation of document

instances

Addressing document components

Querying document components

XML family of standards

DTD

XML

Schema

XPath/XSLT DOM SAX

XPath

XQuery

Namespaces

Let us skip
these ones...

● XML
● XML Schemas (rather than DTDs)
● Namespaces:

SOAP/WSDL/WADL:
Enabling technologies

<x xmlns:edi='http://ecommerce.org/schema'>
<!-- the "edi" prefix is bound to http://ecommerce.org/schema for the
"x" element and contents -->

</x>

which is equivalent to:

<root xmlns:edi='http://ecommerce.org/schema'>
...
<edi:x> ... </edi:x>
...

</root>

http://ecommerce.org/schema

● Self-contained, self-describing, modular applications that
can be published, located, and invoked across the Web
– More properties: loosely coupled, reusable components,

programmatically accessible over ubiquitous protocols,
interoperable

– Close resemblance with component-oriented software

● Types of Web Services
– Simple content-provider implementation

 (stock quote, weather, geo-localization)
– Complex process or world-altering

 (hotel and ticket booking, resource handling)
– GET vs POST in Restful services

Web Services

Components: A simple definition

● Component = Class (from OO) + structural conventions
● Real-world example: JavaBeans; OSGi

– A JavaBean must contain a default constructor
– A JavaBean must be serializable
– JavaBean properties must be accessed via getters/setters

public class PersonBean implements java.io.Serializable {
 private String name; private int age;
 public PersonBean() {}
 public void setName(String n) { this.name = n; }
 public void setAge(int a) { this.age = a; }
 public String getName() { return (this.name); }
 public int getAge() { return (this.age); }
}

● Other component models usually define other conventions,
for example forbid data sharing between components

● Software components are reusable

● To be used, a component must:
 - be packaged to be deployed as
 part of some larger application
 - fit with the existing framework
 used to develop the system
● Pre-FOOS: Components were sold

Many component frameworks for
building distributed systems exist
(J2E, DCOM, .NET, CORBA, etc.)
but they are not compatible -->

Components vs Web Services

● Web services are reusable too

● To be used a Web Service must:
 - be published on the Web
 - Composed; no need to download

● Web Services can be sold too (e.g. Twitter)
otherwise You are the product!

Web Services:
Standards organizations

When reading about Web Services, you will surely encounter When reading about Web Services, you will surely encounter
the words “standard”, “specification” and “extension” (i.e., WS-*)...the words “standard”, “specification” and “extension” (i.e., WS-*)...

Web Services: Architecture

A de facto standard
materialization:

- Find/Publish/ Unpublish
(UDDI or Syntactic
registries)

- Bind (SOAP+WSDL,
JSON+WADL/Swagger)

PCs/Browsers are not the only way to access PCs/Browsers are not the only way to access
Web information!Web information!

Web Services: Service consumers

Web ServerWeb Server

<html><html>

Web ServerWeb Server

<html>/<html>/
<xml>/<xml>/
<json><json>

Server facade
(Web Services)

C++
Java.NET

Without WS

With WS

Web Services: Some links

● Specifications

– SOAP: http://www.w3.org/TR/soap
– WSDL: http://www.w3.org/TR/wsdl
– UDDI: http://xml.uddi.org
– WADL: http://www.w3.org/Submission/wadl/

● Java libraries

– Axis2: http://ws.apache.org/axis2
– UDDI4J: http://uddi4j.sourceforge.net
– jUDDI: http://ws.apache.org/juddi

http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl
http://xml.uddi.org/
http://www.w3.org/Submission/wadl/
http://ws.apache.org/axis2
http://uddi4j.sourceforge.net/
http://ws.apache.org/juddi

● SOAP stands for “Simple Object Access Protocol”
● W3C Recommendation

SOAP is essentially an
XML transport protocol:

 - There is a sender and a receiver
 - Content is interchanged between
these two

Web Services: SOAP

POST /soap HTTP/1.1
Host: 216.128.29.26
Content-Type: text/plain
Content-Length: 200

200 OK

Content-Type: text/plain

Content-Length: 200

HTTP Client HTTP Server

Request:

Response:

400 Bad Request

Content-Length: 0

Or Error:

SOAP: Relationships with HTTP

POST /InStock HTTP/1.1
Host: www.stock.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope">
 <soap:Body xmlns:m="http://www.stock.org/stock">

 <m:GetStockPrice>
 <m:StockName>IBM</m:StockName>

 </m:GetStockPrice>
 </soap:Body>
</soap:Envelope>

SOAP: Relationships
with HTTP (cont.)

HTTP/1.1 200 OK
Content-Type: application/soap; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-

envelope">
<soap:Body xmlns:m="http://www.stock.org/stock">

<m:GetStockPriceResponse>
<m:Price type=“xsd:float”>34.5</m:Price>

</m:GetStockPriceResponse>
</soap:Body>

</soap:Envelope>

SOAP: Relationships
with HTTP (cont.)

SOAP faults

● Errors ocurred during message processing
– One per SOAP message
– Optional (non-mandatory)
– Linked to 500 to 599 HTTP status code

● Contain:
– <faultCode> (SOAP-ENV:Client and SOAP-ENV:Server
– <faultString>
– <faultActor>
– <detail> (application-specific detailed information)

● Transformed to language-specific exception mechanisms (e.g.
Axis2 SOAPFault)

HTTP/1.1 500 OK
Content-Type: application/soap; charset=utf-8
Content-Length: nnn

SOAP faults: Relationships
with HTTP

<?xml version = '1.0' encoding = 'UTF-8'?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV = "http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi = "http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd = "http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode xsi:type = "xsd:string">SOAP-ENV:Client</faultcode>
 <faultstring xsi:type = "xsd:string">
 Failed to locate method (ValidateCreditCard) in class (examplesCreditCard) at
 /usr/local/ActivePerl-5.6/lib/site_perl/5.6.0/SOAP/Lite.pm line 1555.
 </faultstring>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

“xsd” versus “xsi” preffix: https://tinyurl.com/ybbj39ca

https://tinyurl.com/ybbj39ca

● WSDL stands for “Web Service Description Language”
● W3C standardization effort

A WSDL definition is an XML
document describing the interface
of a SOAP Web Service:

- Interface: (operations; input/output)
- Access (protocol binding)
- Endpoint (location of service)

Web Services: WSDL

WSDL

WSDL document

Port type

Messages

Data types
Endpoint & binding?

WSDL vs Java

Java

Java interface (explicit)/
Java class (implicit)
Method signatures
(behavior)
Individual method
parameters + return types
Argument types

WSDL 1.0: Message exchange patterns

Similar to
calling
methods
in Java

Less used
interaction
patterns...

Client

Client

Client

Client

Service

Service

Service

Service

WSDL 2.0: Message exchange patterns

● In-Only
● In-Out
● Out-In
● Out-Only
● Robust In-Only
● In-Optional-Out
● Robust Out-Only
● Out-Optional-In

Same as
previous slide

WSDL: One-way operation example

...
<message name="updateStock">
 <part name="quote" type="xsd:string"/>
 <part name="price" type="xsd:float"/>
</message>

<portType name="dictionary">
 <operation name="updateStock">
 <input name="newStockPrice" message="updateStock"/>
 </operation>
</portType>
...

WSDL: Request-response
operation example

...
<message name="getStockQuoteRequest">

<part name=“quote" type="xsd:string"/>
</message>

<message name="getStockQuoteResponse">

<part name=“price" type="xsd:float"/>
</message>

<portType name=“StockQuotePortType">
<operation name=“getStockQuote">

<input message=“getStockQuoteRequest"/>
<output message="getStockQuoteResponse"/>

</operation>
</portType>
...

● Language and platform independent

● Multiple operation patterns (MEPs)

● Operations can have multiple inputs and outputs

● Support for multiple bindings (SOAP, RMI, CORBA,
Rest)

● More than one binding for the same port type

WSDL: Summary

● UDDI stands for “Universal Description, Discovery, and
Integration Protocol”

● OASIS standardization effort

A UDDI node represents a
registry for Web Services:

 - Business
 - Service information (taxonomies)
 - Technical details

Web Services: UDDI

● Browser-based (e.g., Eclipse WTP)

● Programmatic (e.g., using uddi4j):

UDDI: Inspection

UDDIProxy proxy = new UDDIProxy();
proxy.setInquiryURL(

"http://www-3.ibm.com/services/uddi/ testregistry/inquiryapi");
proxy.setPublishURL(

"https://www-3.ibm.com/services/uddi/ testregistry/protect/publishapi");

BusinessList bl = proxy.find_business("Business", null, 0);
Vector businessInfoVector = bl.getBusinessInfos().getBusinessInfoVector();
for (int i = 0; i < businessInfoVector.size(); i++) {

BusinessInfo businessInfo = (BusinessInfo)businessInfoVector.elementAt(i);
System.out.println(businessInfo.getNameString());

}

● UDDI is more like a structured search engine in the
sense that search criteria are prescribed

● Alternatively, Web Services search engines provide a
Google-like interface for looking for services
– Most of them rely on text processing techniques
– Performance heavily depends on contract quality

● Some examples:
– Woogle: http://db.cs.washington.edu/webService
– WSQBE:

http://dx.doi.org/10.1016/j.scico.2008.02.002
– Swoogle: http://swoogle.umbc.edu
– WSCE (syntactic search on top of UDDI):

http://www2007.org/poster968.php
– ProgrammableWeb.com, Mashape.com

Web Services: Search engines

http://db.cs.washington.edu/webService
http://dx.doi.org/10.1016/j.scico.2008.02.002
http://swoogle.umbc.edu/
http://www2007.org/poster968.php

Search engines: Mashape.com

● Syntactic service registries represent a Web Service as a bag of
words obtained from a WSDL document.
● Queries are transformed to a bag of words
● Web Services are ranked by their similarity with a query
● Similarity is measured by the number of shared words
between the WSDL document and the query

 Representation of
“currency exchange”

Ω represents the difference
between document 1 and 2

Syntactic search engines: Basics

● How to obtain vectors? Given a set of words:

- Stop-words removal (e.g. “message”)

- Porter’s stemming (e.g. “provider/provide” → “provid”)

- TF-IDF(t): TF(t) * IDF (t)

● TF(t) = (Number of times term t appears in a description) / (Total
number of terms in the description)

● IDF(t) = log_e(Total number of descriptions / Number of descriptions
with term t in it).

Syntactic search engines: Basics (cont.)

Query-service (or service-service) similarity is determined using
the cosine between the two n-dimensional vectors, where n

depends on the vocabulary size

● A service description containing 100 words

● The word “weather” appears 3 times

● TF(weather) is then (3 / 100) = 0.03

● We have 10 million services and the word “weather” appears in
one thousand of these

● IDF(weather) is log(10,000,000 / 1,000) = 4

● TF-IDF(weather) = 0.03 * 4 = 0.12

Syntactic search engines: TF-IDF example

<volum,0.8111822569335132>, <unit,0.5242440213277584>,
<chang,0.258312567411114>, <valu,0.01996212802225258>,
<result,0.005261473239922817>

Syntactic search engines: Basics (cont.)

Stop-word removal + Porter’s stemmer
 + TF-IDF

Syntactic search engines: Basics (cont.)

How to evaluate Web Service registries performance?

- Recall-at-n: Computes the proportion of retrieved relevant
documents (RetRel) within a result list of size=n, where R
represents all relevant documents in the evaluation-set →
RetRel_n/R

● Example: 15 relevant documents, 3 retrieved with n=10 →
Recall-at-10=3/15=20%

- Precision-at-n: Computes precision at different cut-off points of
the result list (RetRel_n/n)

● Example: 5 relevant documents in the first 5 positions with
n=10 → Precision-at-5=100%, Precision-at-10=50%

Syntactic search engines: Basics (cont.)

- F1-measure: 2*[(Recall-at-n * Precision-at-n] /
[(Recall-at-n + Precision-at-n]

- nDCG (per query): DCGp/IDCGp

Syntactic search engines: nDCG example

- A registry returns for a given query 6 descriptions D1, D2, …,
D6 with relevance scores 3, 2, 3, 0, 1, 2

- Finally, ideal DCG (IDCG6) is computed assuming as if the
order was 3, 3, 2, 2, 1, 0

- nDCG is thus between 0 and 1

Syntactic search engines: Basics (cont.)

Engine performance is conditioned by the
vocabulary problem (more on this later)

● Ambiguous acronyms

● Synonyms (“tv” versus “television”)

● Polysemy (words having different meanings)

● Quasi-synonyms (“disease” and “disorder”)

Questions?

<Web
Services/>

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	The Promise of Web Services
	Slide 9
	Slide 10
	SOAP
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	WSDL
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	UDDI
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

