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● Domain-specific XML-based standards
– e.g., MathML, DrawML, RSS, XHTML, SOAP/WSDL/WADL SOAP/WSDL/WADL

● A number of general standards:

Well-formed document instances

Validation of document instances

Parsing/transformation of document

instances

Addressing document components

Querying document components

XML family of standards

DTD

XML

Schema

XPath/XSLT DOM SAX

XPath

XQuery

Namespaces

Let us skip
these ones...



● XML
● XML Schemas (rather than DTDs)
● Namespaces:

SOAP/WSDL/WADL:
Enabling technologies

<x xmlns:edi='http://ecommerce.org/schema'>
<!-- the "edi" prefix is bound to http://ecommerce.org/schema for the 
"x" element and contents -->

</x>

which is equivalent to:

<root xmlns:edi='http://ecommerce.org/schema'>
...
<edi:x> ... </edi:x>
...

</root>

http://ecommerce.org/schema


● Self-contained, self-describing, modular applications that 
can be published, located, and invoked across the Web
– More properties: loosely coupled, reusable components, 

programmatically accessible over ubiquitous protocols, 
interoperable

– Close resemblance with component-oriented software

● Types of Web Services
– Simple content-provider implementation 

   (stock quote, weather, geo-localization)
– Complex process or world-altering

   (hotel and ticket booking, resource handling)
– GET vs POST in Restful services

Web Services



Components: A simple definition

● Component = Class (from OO) + structural conventions
● Real-world example: JavaBeans; OSGi

– A JavaBean must contain a default constructor
– A JavaBean must be serializable
– JavaBean properties must be accessed via getters/setters

public class PersonBean implements java.io.Serializable {
   private String  name; private int age;
   public PersonBean() {}
   public void setName(String n) { this.name = n; }
   public void setAge(int a) { this.age = a; }
   public String getName() { return (this.name); }
   public int getAge() { return (this.age); }
}

● Other component models usually define other conventions, 
for example forbid data sharing between components



● Software components are reusable
 

● To be used, a component must:
    - be packaged to be deployed as
    part of some larger application
    - fit with the existing framework
    used to develop the system
● Pre-FOOS: Components were sold 

Many component frameworks for 
building distributed systems exist
(J2E, DCOM, .NET, CORBA, etc.)
but they are not compatible            -->

Components vs Web Services

● Web services are reusable too
 

● To be used a Web Service must:
    - be published on the Web
    - Composed; no need to download

 
● Web Services can be sold too (e.g. Twitter) 
otherwise You are the product!



Web Services:
Standards organizations

When reading about Web Services, you will surely encounter When reading about Web Services, you will surely encounter 
the words “standard”, “specification” and “extension” (i.e., WS-*)...the words “standard”, “specification” and “extension” (i.e., WS-*)...



Web Services: Architecture

A de facto standard 
materialization:

- Find/Publish/ Unpublish 
(UDDI or Syntactic 
registries)

- Bind (SOAP+WSDL, 
JSON+WADL/Swagger)



PCs/Browsers are not the only way to access PCs/Browsers are not the only way to access 
Web information!Web information!

Web Services: Service consumers

Web ServerWeb Server

<html><html>

Web ServerWeb Server

<html>/<html>/
<xml>/<xml>/
<json><json>

Server facade
(Web Services)

C++
Java.NET

Without WS

With WS



Web Services: Some links

● Specifications

– SOAP: http://www.w3.org/TR/soap
– WSDL: http://www.w3.org/TR/wsdl
– UDDI: http://xml.uddi.org
– WADL: http://www.w3.org/Submission/wadl/ 

● Java libraries 

– Axis2: http://ws.apache.org/axis2
– UDDI4J: http://uddi4j.sourceforge.net
– jUDDI: http://ws.apache.org/juddi

http://www.w3.org/TR/soap
http://www.w3.org/TR/wsdl
http://xml.uddi.org/
http://www.w3.org/Submission/wadl/
http://ws.apache.org/axis2
http://uddi4j.sourceforge.net/
http://ws.apache.org/juddi


● SOAP stands for “Simple Object Access Protocol”
● W3C Recommendation 

SOAP is essentially an
XML transport protocol:

 - There is a sender and a receiver
 - Content is interchanged between
these two

Web Services: SOAP



POST /soap HTTP/1.1 
Host: 216.128.29.26 
Content-Type: text/plain 
Content-Length: 200

200 OK 

Content-Type: text/plain

Content-Length: 200 

HTTP Client HTTP Server

Request:

Response:

400 Bad Request

Content-Length: 0 

Or Error:

SOAP: Relationships with HTTP



POST /InStock HTTP/1.1 
Host: www.stock.org 
Content-Type: application/soap+xml; charset=utf-8 
Content-Length: nnn

<?xml version="1.0"?> 
<soap:Envelope
 xmlns:soap="http://www.w3.org/2001/12/soap-envelope">
 <soap:Body xmlns:m="http://www.stock.org/stock">

    <m:GetStockPrice> 
   <m:StockName>IBM</m:StockName>

         </m:GetStockPrice> 
  </soap:Body>
</soap:Envelope>

SOAP: Relationships
with HTTP (cont.)



HTTP/1.1 200 OK 
Content-Type: application/soap; charset=utf-8 
Content-Length: nnn

<?xml version="1.0"?> 
<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-

envelope">
<soap:Body xmlns:m="http://www.stock.org/stock"> 

<m:GetStockPriceResponse>
<m:Price type=“xsd:float”>34.5</m:Price>

</m:GetStockPriceResponse> 
</soap:Body>

</soap:Envelope>

SOAP: Relationships
with HTTP (cont.)



SOAP faults

● Errors ocurred during message processing
– One per SOAP message
– Optional (non-mandatory)
– Linked to 500 to 599 HTTP status code

● Contain: 
– <faultCode> (SOAP-ENV:Client and SOAP-ENV:Server
– <faultString>
– <faultActor>
– <detail> (application-specific detailed information)

● Transformed to language-specific exception mechanisms (e.g. 
Axis2 SOAPFault)



HTTP/1.1 500 OK 
Content-Type: application/soap; charset=utf-8 
Content-Length: nnn

SOAP faults: Relationships
with HTTP

<?xml version = '1.0' encoding = 'UTF-8'?>
<SOAP-ENV:Envelope
   xmlns:SOAP-ENV = "http://schemas.xmlsoap.org/soap/envelope/"
   xmlns:xsi = "http://www.w3.org/1999/XMLSchema-instance"
   xmlns:xsd = "http://www.w3.org/1999/XMLSchema">
   <SOAP-ENV:Body>
      <SOAP-ENV:Fault>
         <faultcode xsi:type = "xsd:string">SOAP-ENV:Client</faultcode>
         <faultstring xsi:type = "xsd:string">
            Failed to locate method (ValidateCreditCard) in class (examplesCreditCard) at
               /usr/local/ActivePerl-5.6/lib/site_perl/5.6.0/SOAP/Lite.pm line 1555.
         </faultstring>
      </SOAP-ENV:Fault>
   </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

“xsd” versus “xsi” preffix: https://tinyurl.com/ybbj39ca

https://tinyurl.com/ybbj39ca


● WSDL stands for “Web Service Description Language”
● W3C standardization effort

A WSDL definition is an XML
document describing the interface
of a SOAP Web Service:

- Interface: (operations; input/output) 
- Access (protocol binding)
- Endpoint (location of service) 

Web Services: WSDL



WSDL

WSDL document

Port type

Messages

Data types
Endpoint & binding?

WSDL vs Java

Java

Java interface (explicit)/
Java class (implicit)
Method signatures
(behavior)
Individual method
parameters + return types
Argument types



WSDL 1.0: Message exchange patterns

Similar to
calling
methods 
in Java

Less used 
interaction 
patterns...

Client

Client

Client

Client

Service

Service

Service

Service



WSDL 2.0: Message exchange patterns

● In-Only
● In-Out
● Out-In 
● Out-Only
● Robust In-Only
● In-Optional-Out
● Robust Out-Only 
● Out-Optional-In

Same as 
previous slide



WSDL: One-way operation example

...
<message name="updateStock">
   <part name="quote" type="xsd:string"/>
   <part name="price" type="xsd:float"/>
</message>

<portType name="dictionary">
   <operation name="updateStock">
      <input name="newStockPrice" message="updateStock"/>
   </operation>
</portType>
...



WSDL: Request-response
operation example

...
<message name="getStockQuoteRequest"> 

<part name=“quote" type="xsd:string"/>
</message>
 
<message name="getStockQuoteResponse">

<part name=“price" type="xsd:float"/>
</message>

<portType name=“StockQuotePortType">
<operation name=“getStockQuote">

<input message=“getStockQuoteRequest"/>
<output message="getStockQuoteResponse"/>

</operation>
</portType> 
...



● Language and platform independent

● Multiple operation patterns (MEPs)

● Operations can have multiple inputs and outputs

● Support for multiple bindings (SOAP, RMI, CORBA, 
Rest)

● More than one binding for the same port type

WSDL: Summary



● UDDI stands for “Universal Description, Discovery, and 
Integration Protocol”

● OASIS standardization effort

A UDDI node represents a 
registry for Web Services:

 - Business  
 - Service information (taxonomies)
 - Technical details

Web Services: UDDI



● Browser-based (e.g., Eclipse WTP)

● Programmatic (e.g., using uddi4j):

UDDI: Inspection

UDDIProxy proxy = new UDDIProxy();
proxy.setInquiryURL(

"http://www-3.ibm.com/services/uddi/ testregistry/inquiryapi");
proxy.setPublishURL(

"https://www-3.ibm.com/services/uddi/ testregistry/protect/publishapi");

BusinessList bl = proxy.find_business("Business", null, 0);
Vector businessInfoVector = bl.getBusinessInfos().getBusinessInfoVector();
for (int i = 0; i < businessInfoVector.size(); i++) {

BusinessInfo businessInfo = (BusinessInfo)businessInfoVector.elementAt(i);
System.out.println(businessInfo.getNameString());

}



● UDDI is more like a structured search engine in the 
sense that search criteria are prescribed

● Alternatively, Web Services search engines provide a 
Google-like interface for looking for services
– Most of them rely on text processing techniques
– Performance heavily depends on contract quality

● Some examples:
– Woogle: http://db.cs.washington.edu/webService
– WSQBE: 

http://dx.doi.org/10.1016/j.scico.2008.02.002
– Swoogle: http://swoogle.umbc.edu
– WSCE (syntactic search on top of UDDI): 

http://www2007.org/poster968.php
– ProgrammableWeb.com, Mashape.com

Web Services: Search engines

http://db.cs.washington.edu/webService
http://dx.doi.org/10.1016/j.scico.2008.02.002
http://swoogle.umbc.edu/
http://www2007.org/poster968.php


Search engines: Mashape.com



● Syntactic service registries represent a Web Service as a bag of 
words obtained from a WSDL document.
● Queries are transformed to a bag of words
● Web Services are ranked by their similarity with a query
● Similarity is measured by the number of shared words            
between the WSDL document and the query

  Representation of 
“currency exchange”

Ω represents the difference 
between document 1 and 2

Syntactic search engines: Basics



● How to obtain vectors? Given a set of words: 

- Stop-words removal (e.g. “message”)

- Porter’s stemming (e.g. “provider/provide” → “provid”)

- TF-IDF(t): TF(t) * IDF (t)

● TF(t) = (Number of times term t appears in a description) / (Total 
number of terms in the description)

● IDF(t) = log_e(Total number of descriptions / Number of descriptions 
with term t in it). 

Syntactic search engines: Basics (cont.)

Query-service (or service-service) similarity is determined using 
the cosine between the two n-dimensional vectors, where n 

depends on the vocabulary size



● A service description containing 100 words 

● The word “weather” appears 3 times

● TF(weather) is then (3 / 100) = 0.03

● We have 10 million services and the word “weather” appears in 
one thousand of these

● IDF(weather) is log(10,000,000 / 1,000) = 4

● TF-IDF(weather) = 0.03 * 4 = 0.12

Syntactic search engines: TF-IDF example



<volum,0.8111822569335132>, <unit,0.5242440213277584>, 
<chang,0.258312567411114>, <valu,0.01996212802225258>, 
<result,0.005261473239922817>

Syntactic search engines: Basics (cont.)

Stop-word removal + Porter’s stemmer 
           + TF-IDF 



Syntactic search engines: Basics (cont.)

How to evaluate Web Service registries performance?

- Recall-at-n: Computes the proportion of retrieved relevant 
documents (RetRel) within a result list of size=n, where R 
represents all relevant documents in the evaluation-set → 
RetRel_n/R

● Example: 15 relevant documents, 3 retrieved with n=10 → 
Recall-at-10=3/15=20%

- Precision-at-n: Computes precision at different cut-off points of 
the result list (RetRel_n/n)

● Example: 5 relevant documents in the first 5 positions with 
n=10 → Precision-at-5=100%, Precision-at-10=50%



Syntactic search engines: Basics (cont.)

- F1-measure: 2*[(Recall-at-n * Precision-at-n ] /
[(Recall-at-n + Precision-at-n ]

- nDCG (per query): DCGp/IDCGp



Syntactic search engines: nDCG example

- A registry returns for a given query 6 descriptions D1, D2, …, 
D6 with relevance scores 3, 2, 3, 0, 1, 2

- Finally, ideal DCG (IDCG6) is computed assuming as if the 
order was 3, 3, 2, 2, 1, 0

- nDCG is thus between 0 and 1



Syntactic search engines: Basics (cont.)

Engine performance is conditioned by the 
vocabulary problem (more on this later)

● Ambiguous acronyms

● Synonyms (“tv” versus “television”)

● Polysemy (words having different meanings) 

● Quasi-synonyms (“disease” and “disorder”) 



Questions?

<Web
Services/>
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