
Introduction to Docker

Agenda

- Motivation: Shift from Monolithic to Microservices Architectures

- The problem solved by Docker

- How Docker is different from Virtual Machines

- Docker workflow: Build, Ship and Run

- Docker commands

- Hands-on exercise

5

Monolithic A Decade ago (and still valid)

- Apps were monolithic

Slowly-changing - Built on a single stack such as .NET or Java

- Long Lived

- Deployed to a single server

Big (bare metal)
server

6

Today

- Apps are constantly developed

- Newer version are deployed often (Manjaro)

- Built from loosely coupled components

- Deployed to a multitude of servers

Customer/
Clients/ Users

Data
Storage

Data
Storage

Data
Storage

7

(Linux, Apache, MySQL, PHP)

Once upon a time… A software stack

8

Now....much more distributed, complex...

9

10

11

An Effort to “host” different “stacks”...

12

(Every possible goods) x (Every possible way to ship)

13

A Solution…

14

Docker ~ Brings standardization on packaging stacks

16

Less Portable,
Minimal Overhead

More Portable,
Lots of Overhead

Manual Configuration Traditional VMs

Configuration Tools

17

Less Portable,
Minimal Overhead

More Portable,
Lots of Overhead

Manual Configuration Traditional VMs

Configuration Tools

Development workflow (without Docker)

Development workflow (without Docker)

Development workflow (without Docker)

Development workflow (without Docker)

Development workflow (with Docker)

Development workflow (with Docker)

Development workflow (with Docker)

29

What is Docker?

• A tool that can package an application and its dependencies in a virtual
container

• Implementation of a container which is portable using a concept of image

• Docker uses the host OS kernel, there is no custom or additional kernel inside
running containers

• Docker uses resource isolation features of the Linux kernel such as cgroups and
kernel namespaces to allow independent “containers” to run within a single Linux
instance, avoiding the overhead of starting virtual machines

29

A note on Linux namespaces

• See for example: Process ID isolation
Processes in the child namespace do not see the parent process’s existence;
processes in the parent namespace have a complete view of processes in the child namespace

•

• Isolation for several aspects of processes and resources

Still, processes can compete for exclusive
access to shared real resources (e.g. open a
socket on port 80)

29

A note on Linux namespaces (cont.)

• See for example: Process ID isolation
Processes in the child namespace do not see the parent process’s existence;
processes in the parent namespace have a complete view of processes in the child namespace

•

• Isolation for several aspects of processes and resources

Still, processes can compete for exclusive
access to shared real resources (e.g. open a
socket on port 80)

- A pair of virtual Ethernet connections (ends) must
be created, between a parent and a child
namespace
- Both ends must be assigned a virtual IP address

30

What is Docker?
• Standardized packaging for

software and dependencies

• Isolate apps from each other

• Share the same OS kernel

• Works for all major Linux
distributions

• Available for Windows
(Server, since 2016) and MacOS

34

VMs vs Docker - Differences

Virtual Machines Docker

Each VM runs its own OS All containers share the same kernel of
the host

Boot up time is in minutes Containers instantiate in seconds

VMs snapshots are used sparingly Images are built incrementally on top of
another like layers. Lots of
images/snapshots

Not effective diffs. Not version controlled Images can be diffed and can be version
controlled. Dockerhub is like GITHUB

Cannot run more than couple of VMs on
an average laptop

Can run many Docker containers in a
laptop.

Only one VM can be started from one set
of VMX and VMDK files

Multiple Docker containers can be started
from one Docker image

37

Containers versus VMs

• When and when not? The GPU example...

41

Some Docker vocabulary
Docker Image

The basis of a Docker container. Represents a full application
Specified via Dockerfiles

Docker Container

The standard unit in which the application service resides and executes

Docker Engine

Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)

Cloud or server based storage and distribution service for your images

Image Layering
- An application sandbox.

- Each container is based on an image that holds necessary config
data.

- When you launch a container from an image, a writable layer is
added on top of this image

- An image that has no parent.

- Platform images define the runtime environment, packages and
utilities necessary for containerized application to run.

- A static snapshot of the containers' configuration.

- Image is a read-only layer that is never modified, all changes are
made in top-most writable layer, and can be saved only by creating
a new image.

- Each image depends on one or more parent images

Basic Docker Commands

Pulling Docker Image

$ docker pull fedora/httpd:version1.0

Listing out/removing Docker Images

$ docker image ls
$ docker rmi fedora/httpd:version1.0

Running Docker Containers

$ docker container run –d –p 5000:5000 –-name httpserver fedora/httpd:version1.0

Stopping the container

$ docker container stop httpserver (or <container id>)

Copying files from/to a container (volumes can also be used)

$ docker cp <container id>:<path> <host_path>

Execute commands in a running container

$ docker exec -it <container id> /bin/bash

Dockerfile Basics

Docker Images are built from a
base image.

Base Images are built up using
simple instructions such as

- Run a command.

- Add a file or directory.

- Create an environment
variable.

- What process to run when
this image.

FROM
The FROM instruction sets the Base Image
for subsequent instructions. As such, a valid
Dockerfile must have FROM as its first
instruction. The image can be any valid
image – it is especially easy to start by
pulling an image from the Public
Repositories.

FROM java:8-jre

ENV
The ENV instruction is also useful for
providing required environment variables
specific to services you wish to containerize,
such as Postgres’s PGDATA.

ENV TOMCAT_MAJOR 8
ENV TOMCAT_VERSION 8.0.26

RUN
The instruction will execute any commands in a new
layer on top of the current image and commit results.
The resulting committed image is used for the next
step in the Dockerfile.

RUN apt-get update && apt-get install -y \
 bzr \
 cvs \
 git

ADD and Copy
These commands can be used to add files to
the container

•For ADD if source is a tar file it is extracted

•ADD allows source file to be a URL

•Use a trailing slash to indicate a directory vs a file.

COPY hom* /mydir/ # adds files starting with "hom"
COPY hom?.txt /mydir/ # ? replaced with any single char

EXPOSE
Informs Docker that the container
will listen on the specified network ports at runtime.
This is used to interconnect containers using links
(see the Docker User Guide) and to determine which
ports to expose to the host when using the -P flag.

EXPOSE 8080

The WORKDIR instruction sets the working directory
for any RUN, CMD, COPY and ADD instructions that
follow it in the Dockerfile.

It can be used multiple times in the Dockerfile. If a
relative path is provided, it will be relative to the path
of the previous WORKDIR instruction.

WORKDIR $CATALINA_HOME

WORKDIR

The main purpose of a CMD is to provide defaults for
an executing container.

Can be overridden with arguments to docker run

CMD ["catalina.sh", "run"]

CMD

Hands-on exercise

a) Install Docker (sudo apt install docker.io)
b) Create a folder, a bash script and a Dockerfile
c) Instruct the Dockerfile to execute the script at container startup
d) The script shold list the contents of “/” and place the result in a file
e) Build the image (docker build -t image_name .)
f) Start a container based on the created image
g) Let us use “docker exec” to log in the container and show the results
h) Let us use “docker cp” to copy the output file into the host machine

Build, Ship & Run

48

Put it all together: Build, Ship, Run Workflow
Developers IT Operations

BUILD
Development Environments

SHIP
Create & Store Images

RUN
Deploy, Manage, Scale

Docker Compose – Building Microservices in easy way

Backend Service

Frontend Service

Environmental variables

Environmental variables

Specify Volumes/Network

Specify Volumes/Network

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

