Introduction to Docker

-
docker

Agenda

- Motivation: Shift from Monolithic to Microservices Architectures
- The problem solved by Docker

- How Docker is different from Virtual Machines

- Docker workflow: Build, Ship and Run

- Docker commands

- Hands-on exercise

&> docker

Applications have changed dramatically

~2000 Today
s 2> 2]

Monolithic III. A Decade ago (and still valid)
Apps were monolithic
Slowly-changing I.II

Big (bare metal)

5 &> docker

Built on a single stack such as .NET or Java

- Long Lived

Deployed to a single server

Applications have changed dramatically

~2000 Today
L B B 2 4

Customer/
Clients/ Users
Data
Storage

Today l

- Apps are constantly developed > E -

- Newer version are deployed often (Manjaro) i E;l 1
- Built from loosely coupled components E

- Deployed to a multitude of servers sl

Data
v Storage
Data
Storage

&> docker

Once upon a time... A software stack

(Linux, Apache, MySQL, PHP)
LAMP

7 &> docker

Now....much more distributed, complex...

Static website User DB Analytics DB
hadoop + hive + thrift + Open|DK

Queue

Redis + redis-sentinel

nginx 1.5 + modsecurity + openss| + postgresql + pgv8 + v8
bootstrap 2

Background workers _
'ython 3.0 + celery + pyredis + libcurl + fimpeg WEb frontend API endPOInt

+ libopency + nodejs + phantomjs

Python 2.7 + Flask + pyredis + celery + psycop
+ postgresql-client

Ruby + Rails + sass + Unicorn

&> docker

The New Challenge of Distributed Apps

@
0 Static » .. i
e @ website D @ UserDB @ 0 A"Tzlugms g
@] Q 3]
Backaiouin @g web Front End o} API
G Workers .. Queue &

‘ Endpoint

Development Test & QA Production Scale Out

=}
=]
]
Virtual machines e] Disaster Recovery
Server Cluster

i
=]
—
1

Developer Laptop
Server Data Canter Public Cloud

&> docker

&> docker

11

An Effort to “host” different “stacks”...

&> docker

12

(Every possible goods) x (Every possible way to ship)

? ?) ? ?
? ? ? ? ?
? ? ? ? ?
? ?) ? ?
? ?) ? ?
?
el
L]

&> docker

A Solution...

===

T g
>

- 3

=TT S ™

14

Docker ~ Brings standardization on packaging stacks

Static website

Web frontend

Background
workers

User DB

Analytics DB

Queue

-

T
[]
=T

&> docker

Less Portable, More Portable,
Minimal Overhead Lots of Overhead

Configuration Tools

Manual Configuration Traditional VMs

16 &> docker

Less Portable, More Portable,
Minimal Overhead Lots of Overhead

Configuration Tools g5 docker

Manual Configuration Traditional VMs

17 &> docker

Development workflow (without Docker)

Development Machine Build Server Production

New Code

Development workflow (without Docker)
ajeetraina/myproject

Git Server 6537fgdffj..
New Code

l ‘ @ Build Passes

Development Machine Build Server Production

Development workflow (without Docker)

_ ajeetraina/myproject
Git Server 6537fgdffj..

l ‘ ® Build Passes

New Code

Development Machine Build Server Production

Development workflow (without Docker)

_ ajeetraina/myproject
Git Server 6537fgdffj..

l ‘ ® Build Passes Deployment

New Code

Development Machine Build Server Production

Development workflow (with Docker)

Development Machine Build Server

W

Docker
Registry

Production

‘ NGINX
fd

Docker
Containers

Development workflow (with Docker)

Docker ajeetraina/myproject
Git Server Registry ERERIS
New Code

Docker Image
a45f657
Development Machine Build Server Production

@

@

NGINX NGINX

@u G

Docker
Containers

&= G

Development workflow (with Docker)
: Docker ajeetraina/my project
New Code
\ /{:kerlmage
a45f657 ..

Development Machine Build Server Production

@ MySOL
Docker

Containers

Deployment

What is Docker?

29

A tool that can package an application and its dependencies in a virtual
container

Implementation of a container which is portable using a concept of image

Docker uses the host OS kernel, there is no custom or additional kernel inside
running containers

Docker uses resource isolation features of the Linux kernel such as cgroups and
kernel namespaces to allow independent “containers” to run within a single Linux
instance, avoiding the overhead of starting virtual machines

A note on Linux nhamespaces

« Isolation for several aspects of processes and resources

« See for example: Process ID isolation
Processes in the child namespace do not see the parent process’s existence;
processes in the parent namespace have a complete view of processes in the child namespace

parent PID namespace
« Still, processes can compete for exclusive
access to shared real resources (e.g. open a
socket on port 80)

child PID namespace

29

A note on Linux nhamespaces (cont.)

« Still, processes can compete for exclusive
access to shared real resources (e.g. open a
socket on port 80)

- A pair of virtual Ethernet connections (ends) must
be created, between a parent and a child
namespace

- Both ends must be assigned a virtual IP address

a
:
B
5

29

global net namespace

child net namespace

i

routing
process

What is Docker?

« Standardized packaging for
software and dependencies

CONTAINER CONTAINER CONTAINER ° |SO|ate apps from eaCh Other

Tomcat SQL Server

IEVE] .NET Static Binary e Share the Same OS kernel

Debian Ubuntu Alpine

« Works for all major Linux

distributions

 Avallable for Windows
(Server, since 2016) and MacOS

30 &> docker

VMs vs Docker - Differences

34

Each VM runs its own OS

Boot up time is in minutes

VMs snapshots are used sparingly

Not effective diffs. Not version controlled

Cannot run more than couple of VMs on
an average laptop

Only one VM can be started from one set
of VMX and VMDK files

All containers share the same kernel of
the host

Containers instantiate in seconds

Images are built incrementally on top of
another like layers. Lots of
images/snapshots

Images can be diffed and can be version
controlled. Dockerhub is like GITHUB

Can run many Docker containers in a
laptop.

Multiple Docker containers can be started
from one Docker image

&> docker

Containers versus VMs

App A App B

App A App B App C Bins/Libs Bins/Libs

Bins/Libs Bins/Libs Bins/Libs
Docker Engine

Guest OS

Docker Engine

Host OS

Infrastructure

App C

Bins/Libs

Docker Engine

Guest OS

Hypervisor

Infrastructure

* When and when not? The GPU example...

37

App D

Bins/Libs

Guest OS

&> docker

Containers Images

How you run How you store
your application your application

Docker Image

The basis of a Docker container. Represents a full application
Specified via Dockerfiles

Docker Container

The standard unit in which the application service resides and executes

Docker Engine

Creates, ships and runs Docker containers deployable on a physical or
virtual, host locally, in a datacenter or cloud service provider

Registry Service (Docker Hub or Docker Trusted Registry)
Cloud or server based storage and distribution service for your images

I m ag e Laye rl n g An application sandbox.

- Each container is based on an image that holds necessary config
data.

- When you launch a container from an image, a writable layer is

) added on top of this image

Container
(writable, running application A)

- A static snapshot of the containers' configuration.

Image is a read-only layer that is never modified, all changes are
made in top-most writable layer, and can be saved only by creating

Platform Image a new image.
(Runtime Environment) Each image depends on one or more parent images

vV

- An image that has no parent.

- Platform images define the runtime environment, packages and
utilities necessary for containerized application to run.

Layered Image 2

Layered Image 1

&> docker

Basic Docker Commands

Registry

Pulling Docker Image

pus hT lpuﬂ
E——

$ docker pull fedora/httpd:versionl.0

buid
Listing out/removing Docker Images mun Contalet bgzg»
<—
$ docker image Is g commit
$ docker rmi fedora/httpd:versionl.0 Image l
Running Docker Containers %

$ docker container run -d -p 5000:5000 --name httpserver fedora/httpd:versionl1.0

Stopping the container
$ docker container stop httpserver (or <container id>)

Copying files from/to a container (volumes can also be used)
$ docker cp <container id>:<path> <host_path>

Execute commands in a running container
$ docker exec -it <container id> /bin/bash &> docker

Dockerfile Basics

Docker Images are built from a

base image. FROM tomcat:7.8.62-jre8
‘ : MAINTAINER Jeff Ellin jeff.ell
Base Images are built up using ENV CORE SOL URL "jdbc:postgre:

simple instructions such as

S5QL_USERNAME “tamr”
SQL_PASSWORD 7123457

gul admin tool

- Run a command.

- Add a file or directory. add sers.xml $CATALINA

- Create an environment

variable. tamr.war Jftamr/tamr.war
catalina.sh $CATALINA HOME,

- What process to run when RUN mv /tamr/*.war $CATALIMA_H

this image.

FROM

The FROM instruction sets the Base Image

for subsequent instructions. As such, a valid

Dockerfile must have FROM as its first

instruction. The image can be any valid

Image - it is especially easy to start by

B\ullmg an image from the Public
epositories.

FROM java:8-jre

ENV

The ENV instruction is also useful for
provld_ln? required environment variables
specific to services you wish to containerize,

such as Postgres’s PGDATA.

ENV TOMCAT MAJOR 8
ENV TOMCAT VERSION 8.0.26

RUN

The instruction will execute any commands in a new
layer on top of the current image and commit results.
The resulting committed image is used for the next
step in the Dockerfile.

RUN apt-get updgte\&& apt-get install -y \
Zr
cvs \

git

ADD and Copy

These commands can be used to add files to
the container

eFor ADD if source iIs a tar file it is extracted
« ADD allows source file to be a URL

eUse a trailing slash to indicate a directory vs a file.

COPY hom* /mydir/ # adds files starting with "hom"
COPY hom?.txt /mydir/ # ? replaced with any single char

EXPOSE

Informs Docker that the container .

will listen on the specified network ports at runtime.
This is used to interconnect containers using links
(see the Docker User Guide) and to determine which
ports to expose to the host when using the -P flag.

EXPOSE 8080

WORKDIR

The WORKDIR instruction sets the working directory
for any RUN, CMD, COPY and ADD instructions that
follow’it in the Dockerfile.

It can be used multiple times in the Dockerfile. If a
relative path is provided, it will be relative to the path
of the previous WORKDIR instruction.

WORKDIR $CATALINA HOME

CMD

The main purpose of a CMD is to provide defaults for
an executing container.

Can be overridden with arguments to docker run

CMD ["catalina.sh", "run"]

Hands-on exercise

Build, Ship & Run

Docker Mission

Developer Workflows Management

Docker Cloud SR o
Docker Compose
. Docker Swarm/UCP . e

Docker Engine

Infrastructure
Compute, Volumes, Networking

Service Discovery

Plugins Clustering & Scheduling
(Orchestration)

Ecosystem Partners

&> docker

Put it all together: Build, Ship, Run Workflow

Developers IT Operations

BUILD SHIP RUN
Development Environments Create & Store Images Deploy, Manage, Scale

&0 21 &

'.‘%4=~]]
G o
o /Q

0e? "y

g —i < >

[

@a®
A

|

Z/K \E
JEE

48 &> docker

Docker Compose — Building Microservices in easy way

version: '3’
services: .
db: (eeessssmmm Backend Service
image: mysqgl:5.7
volumes: .
- db_data:/var/lib/mysql Sp@ley VO|UmES/NetW0rk
restart: always
environment:
MYSQL_ROOT_PASSWORD: somewordpress
MYSQL_DATABASE: wordpress

MYSOL_USER: wordpress Environmental variables

MYSQL_PASSWORD: wordpress

wordpress: .
(s [Frontend Service

- db

image: wordpress:latest .

ports: Specify Volumes/Network
- "8000:80"

restart: always

environment:
WORDPRESS DB HOST: db:3306 EnV|r0nmenta| Var|ab|es
WORDPRESS_DB_USER: wordpress
WORDPRESS DB_PASSWORD: wordpress

volumes:

db_data: Eﬁ' docker

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

