Special Issue FGCS, IF=3.997. Paper submission deadline February 1, 2018

Mobile-oriented cloud architectures and technologies play an important and increasing role in practice due to the widespread adoption of mobile devices. From the industry perspective, the synergy between mobile and cloud technologies has resulted in new cloud provisioning models for supporting mobile application development and deployment, such as Mobile Backend as a Service (MBaaS). MBaaS supports cloud services which are commonly needed by web and mobile systems (e.g., data storage, identity and access management, synchronization and push notifications). From an academic perspective, mobile cloud computing (MCC) is a way of augmenting mobile devices and dealing with the inherent limitations related to remote resources located in the cloud. Specifically, MCC combines advances from mobile computing, cloud computing and wireless/fixed networks so that rich applications, such as speech recognition and augmented reality, can be seamlessly and efficiently “executed” on mobile devices via the actual execution of computations and data processing on remote cloud resources. Techniques materializing this idea include offloading and cyber-foraging.

Fog computing paradigm was introduced around 2012 to provide highly-scalable infrastructures for latency and location-aware MCC applications, where geographical distribution, mobility and SW/HW heterogeneity prevail. While fog computing can be viewed as a special case of MCC, it represents also an evolution of the latter since it includes the ability of augmenting mobile (e.g., laptops, smartphones, tablets and wearables) and wireless devices (e.g., sensors and actuators) with processing/storage resources in their proximity, in terms of network topology. Indeed, several flavors of this idea, including micro-data centers, cloudlets and fog computing itself, follow the edge computing model, by which data/computations are processed using computing resources located at the edge of the network –accessible through wireless protocols– and optionally using remote resources in the cloud.

Motivated not only by the increasing number of mobile devices, but also their ever-growing computing and sensing capabilities, there have been efforts to leverage these devices as destination for offloading computations/data in the context of edge/fog applications. Such a trend has also been referred to as dew computing in the literature. However, current research in the area is still focused on augmenting mobile clients via fixed computing resources (e.g., local servers and computer clusters), so huge unexploited computing and sensing capabilities remain “at the edge”. Therefore, many research opportunities to exploit mobile devices in the context of edge/fog computing arise.

More info here